

	CHAPTER 1 : SOLUTION
1	The value of Henry's constant KH is:
	(A) greater for gases with higher solubility
	(B) greater for gases with lower solubility.
	(C) constant for all gases.
_	(D) not related to the solubility of gases.
2	Increasing the temperature of an aqueous solution will cause:
	(A) decrease in molality (B) decrease in molarity
	(C) decrease in mole fraction
	(C) decrease in % (w/w)
3	Colligative properties depend on:
5	(A) the nature of the solute
	(B) the number of solute particles in solution
	(C) the physical properties of solute
	(D) the nature of the solvent
4	The Van't Hoff's factor for 0.1 M Ba(NO ₃) ₂ solution is 2.74. The degree of
	dissociation is
	(A) 91.3%
	(B) 87%
	(C)100%
_	(D) /4%
5	If liquid A and B form ideal solution:
	(A) The enthalpy of mixing is zero
	(B) The entropy of mixing is zero
	(C) The free energy of mixing is zero
6	(D) the free energy as well as entropy of mixing are zero
0	(Δ) 1
	(A) 1 (B) 3
	(\mathbf{C})
	(D) 7
7	Which has highest freezing point:
	(A) 1 M Glucose
	(B) 1 M NaCl
	(C) 1 M BaCl ₂
	(D) 1 M AIF ₃
8	(A) All mixing 0
	$(A) \Delta \Pi \Pi I X \Pi Y = 0$ $(B) \Delta V mixing = 0$
	(C) P_{2}
	(C) Robult's Law is obeyed (D) Formation of an azeotronic mixture
9	Considering the formation, breaking and strength of hydrogen bond, predict
	which of the following mixtures will show a negative deviation from Raoult's
	law?
	(A) Methanol and acetone.
	(B) Chloroform and acetone.
	(C) Phenol and aniline.

	(D) Cyclohexane and ethanol
10	Which of the following pair will make an ideal solution?
	(A) Chlorobenzene + Chloroethane
	(B) Benzene + Toluene
	(C) Acetone + Chloroform
	(D) water + HCl
11	If 2 gm of NaOH is present in 200 ml of its solution, its molarity will be
	(A) 0.25
	(B) 0.5
	(C) 5
10	(D)10
12	(A) mass nerver to see
	(A) mass percentage
	(B) volume percentage
	(C) volume fraction (D) norm
12	Δ 5% solution of cane-sugar (molecular weight = 342) is isotonic with 1%
13	solution of substance A. The molecular weight of X is
	(A) 342
	(B) 171.2
	(C) 68.4
	(D) 136.8
14	234.2 gm of sugar syrup contains 34.2 gm of sugar. What is the molal
	concentration of the
	solution.
	(A) 0.1
	(B) 0.5
	(C) 5.5
4 5	(D) 55
15	Π_{2} is a toxic gas used in qualitative analysis. If solubility of Π_{2} in water at STP is 0.195 m, what is the value of $K_{1/2}$
	(A) 0.0263 har
	(B) 69.16 bar
	(C) 192 bar
	(D) 282 bar
16	Henry's law constant for molality of methane in benzene at 298 K is 4.27 ×
	10° mm Hg. The mole fraction of methane is benzene at 298 K under 760 mm
	$(\Delta) 1.78 \times 10^{-3}$
	(B) 17.43
	(C) 0.114
	(D) 2.814
17	Among the following substances the lowest vapour pressure is exerted by
	(A) water
	(B) alcohol
	(C) ether
	(D) mercury
18	3 moles of P and 2 moles of Q are mixed, what will be their total vapour
	pressure in the solution if their partial vapour pressures are 80 and 60 torr
	respectively?
	(A) 80 torr

	(B) 140 torr						
	(C) 72 torr						
10	(D) /0 torr						
19	Which of the following solutions shows positive deviation from Raoult's law?						
	(A) Acetone + Aniline						
	(B) Acetone + Ethanol						
	(C) Water + Nitric acid						
	(D) Chloroform + Benzene						
20	The system that forms maximum boiling azetrope is						
	(A) Acetone-chloroform (B) othernel acetore						
	(C) n-hexane-n-hentane						
	(D) carbon disulphide-acetone						
21	A plant cell shrinks when it is kept in a						
	(A) hypotonic solution						
	(B) hypertonic solution						
	(C) isotonic solution						
	(D) pure water						
22	The relative lowering in vapour pressure is proportional to the ratio of number of						
	(A) solute molecules to solvent molecules						
	(B) solvent molecules to solute molecules						
	(C) solute molecules to the total number of molecules in solution						
	D solvent molecules to the total number of molecules in solution						
	What weight of chucanal chould be added to COO a of water in ander to lower its						
23	what weight of glycerol should be added to 600 g of water in order to lower its						
23	freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$)						
23	freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g						
23	(A) 496 g (B) 297 g (C) 310 g						
23	(A) 496 g (B) 297 g (C) 310 g (D) 426 g						
23	(A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by						
23	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume						
23	(A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules						
23	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature						
23	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane						
23 24 25	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt belos in clearing the snow-covered roads in hills. The						
23 24 25	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt helps in clearing the snow-covered roads in hills. The phenomenon involved in the process is						
23 24 25	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt helps in clearing the snow-covered roads in hills. The phenomenon involved in the process is (A) lowering in vapour pressure of snow						
23 24 25	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt helps in clearing the snow-covered roads in hills. The phenomenon involved in the process is (A) lowering in vapour pressure of snow (B) depression in freezing point of snow						
23 24 25	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt helps in clearing the snow-covered roads in hills. The phenomenon involved in the process is (A) lowering in vapour pressure of snow (B) depression in freezing point of snow (C) melting of ice due to increase in temperature by putting salt						
23	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt helps in clearing the snow-covered roads in hills. The phenomenon involved in the process is (A) lowering in vapour pressure of snow (B) depression in freezing point of snow (C) melting of ice due to increase in temperature by putting salt (D) increase in freezing point of snow						
23 24 25 26	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt helps in clearing the snow-covered roads in hills. The phenomenon involved in the process is (A) lowering in vapour pressure of snow (B) depression in freezing point of snow (C) melting of ice due to increase in temperature by putting salt (D) increase in freezing point of snow For carrying reverse osmosis for desalination of water the material used for						
23 24 25 26	 What weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? (K_f = 1.86 K Kg mol⁻¹) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt helps in clearing the snow-covered roads in hills. The phenomenon involved in the process is (A) lowering in vapour pressure of snow (B) depression in freezing point of snow (C) melting of ice due to increase in temperature by putting salt (D) increase in freezing point of snow For carrying reverse osmosis for desalination of water the material used for making semipermeable membrane is						
23 24 25 26	what weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? ($K_f = 1.86 \text{ K Kg mol}^{-1}$) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt helps in clearing the snow-covered roads in hills. The phenomenon involved in the process is (A) lowering in vapour pressure of snow (B) depression in freezing point of snow (C) melting of ice due to increase in temperature by putting salt (D) increase in freezing point of snow For carrying reverse osmosis for desalination of water the material used for making semipermeable membrane is (A) potassium nitrate						
23 24 25 26	 What weight of glycerol should be added to 600 g of water in order to lower its freezing point by 10°C? (K_f = 1.86 K Kg mol⁻¹) (A) 496 g (B) 297 g (C) 310 g (D) 426 g The osmotic pressure of a solution can be increased by (A) increasing the volume (B) increasing the number of solute molecules (C) decreasing the temperature (D) removing semipermeable membrane Sprinkling of salt helps in clearing the snow-covered roads in hills. The phenomenon involved in the process is (A) lowering in vapour pressure of snow (B) depression in freezing point of snow (C) melting of ice due to increase in temperature by putting salt (D) increase in freezing point of snow For carrying reverse osmosis for desalination of water the material used for making semipermeable membrane is (A) potassium nitrate (B) parchment membrane 						
23 24 25 26	What weight of glycerol should be added to 600 g of water in order to lower itsfreezing point by 10°C? ($K_f = 1.86 K Kg mol^{-1}$)(A) 496 g(B) 297 g(C) 310 g(D) 426 gThe osmotic pressure of a solution can be increased by(A) increasing the volume(B) increasing the number of solute molecules(C) decreasing the temperature(D) removing semipermeable membraneSprinkling of salt helps in clearing the snow-covered roads in hills. Thephenomenon involved in the process is(A) lowering in vapour pressure of snow(B) depression in freezing point of snow(C) melting of ice due to increase in temperature by putting salt(D) increase in freezing point of snowFor carrying reverse osmosis for desalination of water the material used formaking semipermeable membrane is(A) potassium nitrate(B) parchment membrane(C) cellulose acetate						

27	Which of the following units is useful in relating concentration of solution with its			
	vapour pressure?			
	(A) Mole fraction			
	(B) Parts per million			
	(C) Mass percentage			
	(D) Molality			
28	Consider the figure and mark the incorrect option:			
	Piston (A) Piston (B)			
	Fresh water Sodium chloride			
	(A) solution in water (B)			
	(A) water will move from side (A) to side (B) if a pressure lower than osmotic pressure is			
	applied on piston (B).			
	(B) water will move from side (B) to side (A) if a pressure greater than osmotic pressure is			
	annlied on niston (B)			
	(C) water will move from side (B) to side (A) if a pressure equal to osmotic pressure is applied			
	on piston (B).			
	(D) water will move from side (A) to side (B) if pressure equal to osmotic pressure is applied			
	on piston (A).			
29	All form ideal solutions except			
	(A) C_2H_5Br and C_2H_5I			
	(B) C_6H_5CI and C_6H_5Br			
	(C) C_6H_6 and $C_6H_5CH_3$			
	(D) C_2H_5I and C_2H_5OH			
30	Calculate molarity of nitrate ions in the mixture of solution produced by			
	mixing 2 litre 3M AgNO ₃ solution with 3 litre 1 M BaCl ₂ solution?			
	(A) 1.2 M (B) 1.8 M			
	(C) 0.5 M			
	(D) 0.4 M			
31	Which of the following solutions in water possesses the lowest vapour pressure.			
	(B) 0.1(M) BaCl ₂			
32	(D) None of these			
52	(A) Nature of the gas			
	(A) Nature of the gas			
	(B) Temperature			
	(C) Flessure of the above			
33	The sum of the mole fraction of the components of a colution is			
1				

	(B) 1
	(C) 2
	(D) 4
	Multiple choice Questions (Asserstion/Reason)
	Given below are two statements labelled as Assertion (A) and Reason (R)
	Select the most appropriate answer from the options given below:
	(A) Both A and R are true and R is the correct explanation of A
	(B) Both A and R are true but R is not the correct explanation of A
	(C) A is true but R is false
34	(D) A is false but R is true Assertion (A): When NaCL is added to water a depression in freezing point is
57	observed Reason (R). The lowering of vapour pressure of a solution causes
	depression in the freezing point.
35	Assertion (A): Azeotropic mixtures are formed only by non-ideal solutions and
	they may have boiling points either greater than both the components or less than
	poin the components.
	the liquid phase of an azeotropic mixture
36	Assertion (A): Molarity of a solution in liquid state changes with
	temperature.
	Reason (R): The volume of a solution changes with change in temperature.
37	Assertion (A): Molecular mass of benzoic acid when determined by colligative
	properties is found high.
	Reason (R): Dimerization of benzoic acid.
38	Assertion: If one component of solution obeys Raoult's Law over a certain
	range of composition, the other component will not obey Henry Law in that
	range.
	Reason: Raoult's law is a special case of Henry's law.
39	Assertion : When methyl alcohol is added to water, boiling point of water
	increases.
	Reason : when a volatile solute is added to a volatile solvent elevation in boiling
40	Assertion: 0.1M NaCl will have same osmotic pressure as that of 0.1M Urea
-0	colution
	Solution.
	Reason: Solution with same concentration will have same osmotic pressure
	CASE BASED OUESTIONS
<u>[1</u>	Osmotic pressure results from a reduction in the chemical potential of a solvent
j	in the presence of a solute. The tendency of a system to have equal chemical
	potentials over its entire volume and to reach a state of lowest free energy gives
	rise to the osmotic diffusion of matter. In ideal and dilute solutions, the osmotic
	pressure is independent of the nature of the solvent and solutes. At constant
	temperature it is determined only by the number of kinetically active particles—
	solution
	For very dilute solutions of non-dissociating compounds osmotic pressure is
	described with sufficient accuracy by the equation $\pi V = nRT$, where n is the

	number of moles of solute, V is the volume of the solution, R is the universal gas
4.4	constant, and / is the absolute temperature.
41	The process used for the desalination of water is
	(A) Reverse Osmosis (B) Electrolysis
	(C) Osmosis
	(C) Osmosis (D) Hydrolysis
42	Which colligative property is most suitable to measure molecular mass of
	proteins
	(A) Lowering of Vapour Pressure
	(B) Elevation of boiling point
	(C) Osmotic Pressure
	(D) Depression of freezing point
43	With increase in temperature osmotic pressure:
	(A) increases
	(D) decreases
	(C) Temains constant (D) None of these
44	200 cm^3 of an aqueous solution of a protein contains 1.26 g of the protein. The
	osmotic pressure of such a solution at 300 K is found to be 2.57×10^{-3} bar.
	Calculate the molar mass of the protein.
	(A) 62,022 g mol ⁻¹
	(B) 60,022 g mol ⁻¹
	(C) 61,022 g mol ⁻¹
	(D) 50,022 g mol ⁻¹
	A solution which obeys Raoult's law strictly is called an ideal solution, while a solution which shows deviations
	from Raoult's law is called a non-ideal solution or real solution. Suppose the molecules of the solvent and solute
	are represented by A and B respectively, and let gAB, gAA and gBB are the attractive forces between A — B , A — A
	and <i>B</i> — <i>B</i> respectively. An ideal solution of the components <i>A</i> and <i>B</i> is defined as the solution in which the
	intermolecular interactions between the components <i>A—B</i> are of the same magnitude as the intermolecular
	interactions found in the pure components $A - A$ and $B - B$. Similarly, a non-ideal solution of the components A
	and <i>B</i> is defined as the solution in which the intermolecular interactions between the components <i>A</i> — <i>B</i> are of
	the different magnitude as the intermolecular interactions found in the pure components A—A and B—B.
45	which type of deviation will be shown by the solution if $yAB < yaa$
	(B) pegative
	(C) no deviation
	(D) both positive and negative deviation
46	What type of liquids form the ideal solution?
	(A) Liquids having high boiling points.
	(B) Liquids that have similar structures from ideal solutions
	(C) Liquids that have similar polarities from ideal solutions
47	(D) Liquids that have similar structures and polarities from ideal solutions
4/	A non-ideal solution with negative deviation is known as

	 (B) maximum boiling azeotropes (C) minimum boiling azeotropes (D) None of these 					
48	95% ethanol by volume is an example of					
	(A) azeotropes					
	(B) maximum boiling azeotropes					
	(C) minimum boiling azeotropes					
	(D) None of these					
All irres in t	All those properties that depend on the number of solute particles irrespective of their nature relative to the total number of particles present in the solution are called colligative properties. Similar to lowering of					
vap	be a function of boining point also depends on the					
num	nder of solute molecules rather than their nature. Let ID° be the					
incr	are an the bailing point $ATb = Tb = T^{0}b$ is known as elevation					
of h	oiling point $\Delta I D = I D$ is known as elevation					
3	Solvent Solution above that for AT and Interest liter					
1 Atm	$\Delta T_{b} \propto m$ [motality]					
Ĵ	$\frac{1}{2} \frac{1}{2} \frac{1}$					
essur	point (ΔTb) is Constant (Ebullioscopic					
our pr	directly Constant).					
Vapo	$T_{r_{o}} \rightarrow T_{r_{o}}$ proportional to the W _{solute} X 1000					
	$T_{emperature/K} \longrightarrow molal concentratio \Delta T_b = K_b \frac{M}{M} + K_b \frac{M}{M}$					
	of the solute in Misolute X Wisolvent					
49	Which has the highest boiling point:					
	(A) 1M Glucose					
	(B) 1M NaCl					
	(C) 1M CaCl ₂					
	(D) 1M Sucrose					
50	(A) Cryoscopic constant is also known as					
	(B) Ebullioscopic Constant					
	C) Molal depression constant					
	(D) both a and b					
51	Unit of Molal elevation constant is -					
	(A) K K g mol - 1					
	(C) Ka mol K^{-1}					
	(C) kg mor $k = 1$					
52	(U) more k =					
	of a solvent in 0.10 C. The molel elevation constant of the liquid is					
	(Δ) 0.01 K/m					
	(B) 0.1 K/m					
	(C) 1 K/m					
	(D) 10 K/m					
Exp	erimentally measured molar mass that is either lower or higher than the expected					
or n	ormal value is called as abnormal molar mass. Quantitatively, the extent to which					

a so has mag	a solute is dissociated or associated can be expressed by van't Hoff factor i. This factor has been defined as ratio of normal molar mass to experimentally determined molar mass or as the ratio of observed colligative property to the calculated colligative									
pro	property.									
Two	Two solutions having same osmotic pressure at a given temperature are called isotonic									
solu	itione	s When a	such solu	tions are	senarate	nd hv sem	ninermea	hle mem	hrane no	osmosis
	ure h	otwoon	thom Fr	r ovamr	lo tho	nemotic i	nraccura	accociat	od with	the fluid
inci	do th			auivalant	to that	of 0 0%	(mace/	volume		chlorida
solu	ue u ition	called n	ormal cal	ing soluti	ion and it	is safe t	o iniect ir	otraveno		nortonic
solu	ition,	is one w	hose con	contratio	n is mor	a than th	o inject il	fluid inc	usiy. A iiy vida tha h	
solu	ilərly		opic solu	tion is or		concent	ration is	loce that	n that of	the fluid
inci	do th		onic solu roll			concern				
53	van	't Hoff fa	ctor i wh	on tho n	articles c	f non-vo	latile solu	uto in vo	latilo solv	/ont
55	und	lerno ass	ociation							
	(Δ)	less that	1							
	(R)	areater t	han 1							
	(C)	equal to	1							
	(D)	none of	- these							
54	van	't Hoff fa	ctor i for	50% dis	sociatior	of Na ₂ S	O₄ is			
	(A)	1								
	(B)	2								
	(C)	3								
	(D)	4								
55	Wha	at happe	ns when	RBCs are	e placed	in a hype	ertonic so	lution:		
	(A) Swell									
(B) Remains unaffected										
	((C) Bur	rst							
50	(D) Shrink									
56	wn	at nappe	ns when	RBCs are	e placed	in 0.5%	Naci soli	ition:		
		(A) SW	ell Illay e	affoctod	ol.					
		(C) Shr	indins un	anecteu						
	(C) SITTIK (D) None of these									
	<u> </u>					6	_			10
	1	2	3	4	5	6	/	8	9	10
	В	В	В	В	А	C	A	D	В	В
	11	12	13	14	15	16	17	18	19	20
	В	D	С	В	D	А	D	С	В	А
	21	22	23	24	25	26	27	28	29	30
	В	С	В	В	В	С	А	С	D	А
	31	32	33	34	35	36	37	38	39	40
	В	D	В	А	В	А	А	А	D	D
4	41	42	43	44	45	46	47	48	49	50
	A	С	Α	С	А	D	В	С	С	В
Į	51	52	53	54	55	56				
	Α	C	Α	В	D	Α				

	CHAPTER 2 : ELETROCHEMISTRY
1.	Which factor does the Nernst equation take into account to calculate electrode potential under non-standard conditions?
	(A) Concentration of reactants and products
	(B) Temperature
	(C) Pressure
	(D) Volume of the solution
2.	Which of the following is a non-spontaneous cell reaction?
	$(A) Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$
	(B) $2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq)$
	$(C)Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$
	$(D) 2H_2O(I) \rightarrow 2H_2(g) + O_2(g)$
3.	What is the standard hydrogen electrode potential?
	(A) +1.23 V
	(B) +0.34 V
	(C) +0.00 V
	(D)-0.76 V
4.	If M, N, O, P and Q are in the increasing order of their standard potentials in standard conditions of their standard half cells, then by combination of which two half cells maximum cell potential will be obtained?
	(A) M and N
	(B) M and O
	(C) M and P
	(D) M and Q
5.	In the electrolysis of water, which gas is liberated at the cathode?
	(A) Oxygen
	(B) Hydrogen
	(C) Chlorine
	(D) Sodium
6.	At which temperatures ceramic materials are known as

	superconductor?
	(A) 0 K
	(B) 273 K
	(C) 150 K
	(D) 1000 K
7.	What does a negative value of E_{cell} (cell potential) calculated using the Nernst equation indicate?
	(A) The reaction is non-spontaneous
	(B) The reaction is at equilibrium
	(C) The concentration of products is higher than the reactants
	(D) The concentration of reactants is higher than the products
8.	What happens to the cell potential (E_{cell}) as the concentration of reactants increases, according to the Nernst equation?
	(A) Increases
	(B) Decreases
	(C) Remains constant
	(D) Cannot be determined
9.	Which of the following statements is true about a galvanic cell?
	(A) It converts chemical energy into electrical energy
	(B) It requires an external source of electricity to operate
	(C) It is non-spontaneous
	(D) It does not involve redox reactions
10.	How does an increase in temperature affect the cell potential (E_{cell}) as per the Nernst equation?
	(A) Increases
	(B) Decreases
	(C) Remains constant
	(D) Depends on the concentration of reactants
11.	Which metal is commonly used as the anode in sacrificial protection against corrosion?
	(A) Zinc
	(B) Copper

	(C) Silver
	(D) Aluminum
12.	Which of the following is a key assumption made in the derivation of the Nernst equation?
	(A) The reaction is spontaneous
	(B) The reaction is at equilibrium
	(C) The concentration of reactants and products is constant
	(D) The reaction occurs in a vacuum
13.	The electrode at which oxidation occurs is called the:
	(A) Anode
	(B) Cathode
	(C) Electrolyte
	(D) Salt bridge
14.	Which of the following is a primary function of a salt bridge in an electrochemical cell?
	(A) It completes the circuit
	(B) It prevents the mixing of electrolytes
	(C) It conducts electricity
	(D) It maintains charge neutrality
15.	Which of the following compounds shows maximum equivalent conductance in their aqueous solutions?
	(A) SrCl ₂
	(B) BeCl ₂
	(C) MgCl ₂
	(D) CaCl ₂
16.	What is the SI unit of electrical conductivity?
	(A) Ohm (Ω)
	(B) Siemens per meter (S/m)
	(C) Coulomb (C)
	(D) Faraday (F)
17.	What does resistivity depend on?

	(A) Temperature only
	(B) Material only
	(C) Length and cross-sectional area
	(D) Both material and temperature
18.	What is the product of the electrolysis of molten sodium chloride?
	(A) Sodium metal and chlorine gas
	(B) Sodium hydroxide and chlorine gas
	(C) Sodium metal and oxygen gas
	(D) Sodium hydroxide and hydrogen gas
19.	Which of the following is not a factor affecting the rate of electrolysis?
	(A) Temperature
	(B) Concentration of electrolyte
	(C) Surface area of electrodes
	(D) Pressure
20.	Which of the following is a half-cell reaction in the Daniell cell?
	(A) $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$
	(B) $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$
	(C) $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$
	(D) $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
21.	The equilibrium constant of the reaction: Cu(s) +2Ag ⁺ (aq) →Cu ²⁺ (aq) +2Ag(s); E° = 0.46 V at 298 K is
	(A) 2.0×10^{10}
	(B) 4.0×10^{10}
	(C) 4.0×10^{15}
	(D) 2.4×10^{10}
22.	What happens to the resistance of a conductor as its length increases?
	(A) Increases
	(B) Decreases
	(C) Remains constant

	(D) Depends on the material							
23.	What is the formula for calculating resistance (R) using resistivity (ρ), length (L), and cross-sectional area (A)?							
	(A) $R=L\rho/A$							
	(B) $R=\rho/AL$							
	(C) R=AL							
	(D) R=ρ/A/	L						
24.	If $E^{0}_{AI3+ AI} = -1.66$ V and $E^{0}_{Fe3+ Fe} = 0.04$ V, which of the two will be stronger reductant?							
	(A) Al ^{3.}	+						
	(B) Fe ³	+						
	(C) Fe							
	(D) Al							
25.								
	Electrolyte	KCI	KNO ₃	HCl	NaOAc	NaCl		
	Δ^{\sim} (S cm ² mol ⁻¹)	149.9	145.0	426.2	91.0	126.0		
	Calculate Δ° _{HOAc} using appropriate molar conductance of the electrolytes listed above at infinite dilution of H ₂ O at 25°C. (A) 517.2 (B) 552.7 (C) 390.7							
26.	Which of the follo	owing is	an exam	ple of a s	econdary	battery?		
	(A) Alkaline	e battery						
	(B) Mercury	/ battery						
	(C) Lithium	-ion batt	ery					
	(D) Fuel cel	I						
27.	What is the funct	tion of tl	he porous	s barrier i	n a salt br	idge?		
	(A) To prev	ent the f	low of elec	ctrons				
	(B) To prev	ent the r	mixing of e	electrolytes	5			
	(C) To allow	v the flov	v of ions					
			rao poutro	lity				

28.	What will be the mole ratio of Cu, Ag and Al respectively, when 1 mole electrons passed through CuSO ₄ , AgNO ₃ and AlCl ₃ solution?
	(A) 1:1:1
	(B) 1:2:3
	(C) 2:1:3
	(D) 3 : 6 : 2
29.	What will be the result of increase in the concentration of Fe^{2+} in the following cell reaction? 2Fe^{3+} + Zn \rightarrow Zn^{2+} + 2Fe^{2+}
	(A) Cell potential increase
	(B) Cell potential decrease
	(C) pH of solution decrease
	(D) None of these
30.	What is the overall cell reaction in a lead-acid battery during discharge?
	(A) $Pb(s) + H_2SO_4(aq) \rightarrow PbSO_4(s) + H_2(g)$
	(B) $Pb(s) + 2H^{+}(aq) \rightarrow Pb^{2+}(aq) + H_{2}(g)$
	(C) $PbO_2(s) + Pb(s) + 2SO_4^2(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$
	(D) $PbO_2(s) + Pb(s) + 2H_2SO_4(aq) \rightarrow 2PbSO_4(s) + 2H_2O(l)$
Asse	ertion and Reason Type Questions:
Note of re (a) B asse	e: In the following questions a statement of assertion followed by a statement ason is given. Choose the correct answer out of the following choices. Both assertion and reason are correct and the reason is correct explanation of rtion.
(bi) I (c) A (d) B (e) A	Both assertion and reason are correct but reason does not explain assertion. ssertion is correct but reason is incorrect. Both assertion and reason are incorrect. Issertion is incorrect but reason is correct.
31.	ASSERTION: An electrochemical cell can be set up only if the redox reaction is spontaneous.
	REASON: A reaction is spontaneous if free energy change is negative.
32.	ASSERTION: Electrical conductivity of copper increases with increase in temperature.
	REASON: The electrical conductivity of metals is due to the motion of electrons.

33.	ASSERTION: Cu ²⁺ ions get reduced more easily than H ⁺ ions.				
	REASON: The standard electrode potential of copper is 0.34V.				
34.	ASSERTION: The resistivity for a substance is its resistance when it is one meter long and its area of cross section is one square meter.				
	REASON: The SI unit of resistivity is ohm meter.				
35.	ASSERTION: Conductivity decreases with dilution				
	REASON: The number of ions per unit volume increases				
36.	ASSERTION: The acidified zinc sulphate solution is electrolysed between zinc electrodes, it is zinc that is deposited at the cathode and no hydrogen gas is evolved.				
	REASON: The electrode potential of zinc is more negative than that of hydrogen as the overvoltage for the hydrogen evolution on zinc is quite large.				

ANSWER KEY

(A) 2. (D) 3. (C) 4. (D) 5. (B) 6. (C) 7. (A) 8. (B) 9. (A) 10. (A)
 (A) 12. (C) 13. (A) 14. (D) 15. (A) 16. (B) 17. (D) 18. (A) 19. (D) 20. (D)
 (C) 22. (A) 23. (A) 24. (D) 25. (C) 26. (C) 27. (C) 28. (D) 29. (B) 30. (D)
 (B) 32. (D) 33. (A) 34. (B) 35. (C) 36. (A)

		CHAPTER-3	CHEMICAL KI	NETICS				
1.	T ₅₀ of first oromin is	der reaction is 1	0 min. Starting w	ith 10 mol L $^{-1}$, ra	te after 20			
	a) 0.0693mol	L ⁻¹ min ⁻¹						
	b) 0.0693 X 2	.5 mol L ⁻¹ min -	1					
	c) 0.0693 X 5	mol L ⁻¹ min ⁻¹						
	d)0.0693 X 10) mol L -1 min -1	iol L -1 min -1					
2.	In a reaction,	$2A_2 + B_2 \rightarrow 2A_2B_2$	the reactant A w	ill disappear at:				
	a) half the ra	te that B will deo	crease					
	b) the same i	rate that B will d	ecrease					
	c) double the	rate that A ₂ B wil	l form					
	d) twice the r	ate that B will de	ecrease					
3.	The temperature coefficient of a reaction is:							
	a) ratio of rate constants at at two temperature differing by 1 0 C							
	b) ratio of rate constants at temperature 35 $^{\rm 0}$ C and 25 $^{\rm 0}$ C							
	c) ratio of rate constants at temperature 30 $^{\rm 0}$ C and 25 $^{\rm 0}$ C							
	d) specific reaction rate at 25 0 C							
4.	Compounds 'A' and 'B' react according to the following chemical equation. A (g) + 2 B (g) \rightarrow 2C (g) Concentration of either 'A' or 'B' were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for the rate equations for this reaction.							
	ExperimentInitial concentration of [A]/mol L^{-1}Initial concentration of [B]/mol L^{-1}Initial rate of formation of [C]/mol L^{-1} s^{-1}							
	1.	0.30	0.30	0.10				
	2.	0.30	0.60	0.40				
	(a) Rate = k [A1 ² [B1	0.00	0.20				
	(b) Rate = k [A] [B] ²							

	(c) Rate = k [A] [B] (d) Rate = k [A] ² [B] ⁰
5.	Rate law for the reaction A + B \rightarrow C is found to be Rate = k[A] [B] ² Concentration of reactant 'B' is doubled, keeping the concentration of 'A' constant, the rate will be
	(a) same
	(b) doubled
	(c) quadrupled
	(d) halved
6.	For the reaction $NH_4 + + OCN^{} \rightleftharpoons NH2CONH2$, the probable mechanism is
	NH_4 + OCN \rightarrow NH4OCN (fast)
	NH₄OCN ⁻ ⇔NH₂CONH₂ (slow)
	The rate law will be:
	a) rate = $k[NH_2CONH_2]$
	b) rate = $k[NH_4]^+ + [OCN] -$
	c) rate = k[NH ₄ OCN]
	d) none of these
7.	Dimethyl ether breakdown is a fractional order process. rate= $k(PCH_3OCH_3)^{3/2}$ gives the rate. What are the units of rate and rate constant if pressure is measured in bars and time is measured in minutes?
	(a bar min-1, bar2 min ⁻¹
	(b) bar min ⁻¹ , bar ^{1/2} min ⁻¹
	(c) bar ^{1/2} min ⁻¹ , bar ² min ⁻¹
	(d) bar min ⁻¹ , bar ^{1/2} ml
8.	The rate constant of a first order reaction is $1.15 \ 10^{-3} \ s^{-1}$. How long will it take to decrease 5 g of this reactant to 3 g?
	a) 444 seconds
	(b) 400 seconds
	(c) 528 seconds
	(d) 669 seconds
9.	For a reaction A + B \rightarrow C, the experimental rate law is found to be R=k[A]1[B]1/2. Find the rate of the reaction when [A] = 0.5 M, [B] = 0.1 M and k=0.03.

	a. 4.74 × 10 ⁻³ (L/mol) ^{1/2} s ⁻¹
	b. $5.38 \times 10^{-3} (\text{L/mol})^{1/2} \text{s}^{-1}$
	c. 5.748 × 10 ⁻³ (L/mol) ^{1/2} s ⁻¹
	d. 4.86 × 10 ⁻³ (L/mol) ^{1/2} s
10.	How many times will the rate of the elementary reaction $3X + Y \rightarrow X_2Y$ change if the concentration of the substance X is doubled and that of Y is halved?
	a. r ₂ = 4.5r ₁
	b. $r_2 = 5r_1$
	c. $r_2 = 2r_1$
	d. $r_2 = 4r_1$
11.	$\ln[A]_{o}$
	$In[A]_t$ t
	A plot is shown between concentration and time t. Which of the given orders is indicated by the graph
	a) Zero Order
	(b) Second Order
	(c) First Order
	(d) Fractional Order
12.	Which of the following statements are true ?
	(1) Reactions with more negative values of ΔG° are spontaneous and proceed at a higher rate than those with less negative values of ΔG° .
	(2) The activation energy, E_a , is usually about the same as ΔE for a reaction.
	(3) The activation energy for a reaction does not change significantly as temperature changes.
	(4) Reactions usually occur at faster rates at higher temperatures.
	(a) 1, 2, 4
	(b) 3, 4
	(c) 1, 2, 3
	(d) 2, 3, 4

13.	Which statement is false ?				
	(a) If a reaction is thermodynamically spontaneous it may occur rapidly.				
	(b) If a reaction is thermodynamically spontaneous it may occur slowly.				
	(c) Activation energy is a kinetic quantity rather than a thermodynamic quantity.				
	(d) If a reaction is thermodynamically spontaneous, it must have a low activation energy.				
14.	What is the activation energy (in kJ) of a reaction whose rate constant increases by a factor of 100 upon increasing the temperature from 300 K to 360 K?				
	(a) 27				
	(b) 35				
	(c) 42				
	(d) 69				
15.	.Consider the reaction A $->$ B. The concentration of both the reactants and the products varies exponentially with time. Which of the following figures correctly describes the change in concentration of reactants and products with time?				
	(a) $(b) (c) $				
	(c) $[A] \\ \hline [B] \\ \hline [M] \\ \hline \ [M] \\ \hline \ [M] \\ \hline \hline \ [M] \\ \hline \hline$				

Assertion and Reason Type Questions

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

(a) Both assertion and reason are correct and the reason is correct explanation of assertion.

(bi) Both assertion and reason are correct but reason does not explain assertion.

- (c) Assertion is correct but reason is incorrect.
- (d) Both assertion and reason are incorrect.
- (e) Assertion is incorrect but reason is correct.

16.	Assertion : Order of the reaction can be zero or fractional. Reason : We cannot determine order from balanced chemical equation.				
17.	Assertion : Order and molecularity are same. Reason : Order is determined experimentally and molecularity is the sum of the stoichiometric coefficient of rate determining elementary step.				
18.	 Assertion : The enthalpy of reaction remains constant in the presence of a catalyst. Reason : A catalyst participating in the reaction, forms different activated complex and lowers down the activation energy but the difference in energy of reactant and product remains the same. 				
19.	Assertion : All collision of reactant molecules lead to pro Reason : Only those collisions in which molecules have co and sufficient kinetic energy lead to compound formation.	duct formation. orrect orientation			
20.	 Assertion : Rate constants determined from Arrhenius equation are fairly accurate for simple as well as complex molecules. Reason : Reactant molecules undergo chemical change irrespective of their orientation during collision. 				
21.	Match the items of Column I and Column II.				
	Column I	Column II			
	(i) Mathematical expression for rate of reaction	(a) rate constant			
	(ii) Rate of reaction for zero order reaction is equal to	(b) rate law			
(iii) Units of rate constant for zero order reaction is (c) order of same as that of step					
	(d) rate of a (iv) Order of a complex reaction is determined by reaction				
	(iv) Order of a complex reaction is determined by	(d) rate of a reaction			
	(iv) Order of a complex reaction is determined bya) i b ii a iii d iv c	(d) rate of a reaction			

	c) i b ii c iii d iv a				
	d) i b ii a iii c iv d				
22.	Suppose the activation constant at $T_1 = 300$ K the reaction is times	energy of a certain reaction is is k_1 and the rate constant at faster at 320 K than at 300 K	$T_2 = 320$ K is k_2 , then		
	(a) 3 x 10 ⁻²⁹				
	(b) 0.067				
	(c) 15.0				
	(d) 525				
23.	At 300 K, the following k[NOCl] ² : 2NOC	reaction is found to obey the I \rightarrow 2NO + Cl ₂	rate law: Rate =		
	Consider the three post response that lists all th	culated mechanisms given belo nose that are possibly correct a	ow. Then choose the and no others.		
	Mechanism 1	NOCI → NO + CI	slow		
		$CI + NOCI \longrightarrow NOCI_2$	fast		
		$NOCI_2 + NO \rightarrow 2NO + CI_2$	fast		
		Overall: 2NOCI \implies 2NO + Cl_2			
	Mechanism 2	$2NOCI \longrightarrow NOCI_2 + NO$	slow		
		$NOCI_2 \longrightarrow NO + CI_2$	fast		
		Overall: 2NOCI \implies 2NO + Cl ₂			
	Mechanism 3	NOCI 럳 NO + CI	fast, equilibrium		
		NOCI + CI \rightarrow NO + CI ₂	slow		
		Overall: 2NOCI \implies 2NO + Cl_2			
	(a) 2, 3				
	(b) 3				
	(c) 1				
	(d) 2				

24.	The half-life for a first-order reaction is 32 s. What was the original concentration if, after 2.0 minutes, the reactant concentration is 0.062 M?
	(a) 0.84 M
	(b) 0.069 M
	(c) 0.091 M
	(d) 0.075 M
25.	A first order reaction has a half-life length of 10 minutes. In 100 minutes, what proportion of the response will be completed?
	(a) 25%
	(b) 50%
	(c) 99.9%
	(d) 75%
26.	n 30 minutes, a first-order reaction is 50% complete. Calculate the amount of time it took to complete 87.5 percent of the reaction.
	a) 30 minutes
	b) 60 minutes
	c) 90 minutes
	d) 120 minutes
27.	Which of the following is the right temperature coefficient (n) expression?
	a) n = Rate constant at T + $10^{\circ}/Rate$ constant at T ^o
	b) n = Rate constant at T + 20°/Rate constant at T°
	c) n = Rate constant at T + $30^{\circ}/Rate$ constant at T ^o
	d)n = Rate constant at T + 40°/Rate constant at T°
28.	In a reversible reaction the energy of activation of the forward reaction is 40 kJ. The energy of activation for the reverse reaction will be (a) 40 kJ (b) either greater than or less than 40 kJ
	 (c) less than 40 kJ (d) more than 40 kJ
29.	The rate of a chemical reaction is expressed either in terms of decrease in the concentration of a reactant per unit time or increase in the concentration of product per unit time. Rate of the reaction depends upon the nature of reactants, concentration of reactants, temperature, presence of catalyst, surface area of the reactants and presence of light. Rate of reaction is

	directly related to the concentration of reactant. Rate law states that the rate of reaction depends upon the concentration terms on which the rate of reaction actually depends, as observed experimentally. The sum of powers of the concentration of the reactants in the rate law expression is called order of reaction while the number of reacting species taking part in an elementary reaction which must collide simultaneously in order to bring about a chemical reaction is called molecularity of the reaction.
	rate of any reaction generally decrease during the course of the reaction?
	a) concentration of reactants decreases
	b) concentration of reactants increases
	c)temperature decrease
	e)surface area increases
30.	Zero order reactions are relatively uncommon but they occur under special conditions. Some enzyme catalysed reactions and reactions which occurs on metal surfaces are a few examples of zero order reactions. The decompositions which occurs on metal surfaces are a few examples of zero order reactions. The decomposition of gaseous ammonia on a hot platinum surface is a zero order reaction at high pressure. $2NH3(g)1130K\rightarrow Pt \text{ catalystN2}(g)+3H2(g)$ Rate=k[NH3]0=k In this reaction, Pt acts as a catalyst. At high pressure, the metal surface gets saturated with gas molecules. So a further change in reaction conditions is unable to alter the amount of ammonia on the surface of the catalyst making the rate of the reaction independent of its concentration. Q. If [R]0 and [R] are the concentrations of the reactant initially and after time t, the equation relating k. is
	a)k=[R]0-[R]/t
	b)k=[R]0-[R]t
	c)k=[R]0+[R]t

	ANSWER KEY							
1. b	2. d	3. b	4.b	5. c	6. c	7. b	8. a	9.a 10.d
11. c	12. b	13. d	14. d	15. b	16. b	17. e	18. a	19.e 20.c
21. a	22. d	23. d	24. a	25. c	26. c	27. A	28. b	29.a 30.a

		CHAPTER 4 : d- and f-BLOCK ELEMENTS
1		Which of the following statements are INCORRECT?
		i. All the transition metals except scandium form MO oxides which
		are ionic.
		in transition metal oxides is attained in $S_{C_2}O_2$ to Mn_2O_7
		iii Basic character increases from V_2O_2 to V_2O_4 to V_2O_5
		iv. V_2O_4 dissolves in acids to give VO_4^{3-} salts.
		v. CrO is basic but Cr_2O_3 is amphoteric.
		Choose the correct answer from the options given below:
	А	ii and iv
	В	iii and iv
	С	ii and iii
	D	i and v
2		What is the correct order of EM^{2+}/M° values with a negative sign for
		the four elements Cr, Mn, Fe, and Co?
	А	Fe > Mn > Cr > Co
	В	Cr > Mn > Fe > Co
	С	Mn > Cr > Fe > Co
	D	Cr > Fe > Mn > Co
3		The total number of unpaired electrons in Mn^{3+} , Cr^{3+} , and V^{3+} gaseous
		species is, and the most stable species is
	A	4, 3 and 2; V ³
	В	3, 3 and 2; Cr ³⁺
	C	4, 3 and 2; Cr ³⁺
	D	3, 3 and 3; Mn ³⁺
4		Statement I : Cr^{2+} is oxidising and Mn^{3+} is reducing in nature.
		Statement II : Sc ³⁺ compounds are repelled by the applied magnetic
	Δ.	Tield. Chatamant I is incorrect but Chatamant II is correct
	A	Statement I is incorrect but Statement II is correct
		Both Statement I and Statement II are incorrect
		Statement I is correct but Statement II is incorrect
5		The incorrect statement among the following is :
5	Δ	Actinoids are highly reactive metals, especially when finely divided
	B	Actinoid contraction is greater for element to element than
	D	lanthanoid contraction.
	С	Most of the trivalent Lanthanoid ions are colorless in the solid state
	D	Lanthanoids are good conductors of heat and electricity
6		Zr (Z = 40) and $Hf (Z = 72)$ have similar atomic and ionic radii
		because of :
	Α	Having similar chemical properties
	В	Belonging to same group
	С	Diagonal relationship
	D	Lanthanoid contraction
7		Identify the incorrect statement.

	А	The	tran	sitio	n me	etals and their c	ompounds are known for their
		and	to fr	acti arm	romi	nlexes	ity to adopt multiple oxidation states
	В	Inter	stiti	ial co	ompo	ounds are those	that are formed when small atoms
	_	like l	H, C	or N	l are	trapped inside	the crystal lattices of metals.
	С	The	oxid	atio	n sta	ites of chromiun	in CrO_4^{2-} and $Cr_2O_7^{2-}$ are not the
		same	e.				
	D	Cr ²⁺	(d ⁴)) is a	a stro	onger reducing a	agent than Fe^{2+} (d ⁶) in water.
8		Whic	ch oi	ne of	f the	following ions e	xhibits d-d transition and
		para	mag	jneti	c as	well?	
	A	CrO ₄	2-				
	В	Cr ₂ O ₇ ²⁻					
	C	MnO	4				
	D	MnO	4 2-				
9		Matc mon	n th nent	ie m s of	etal <u>the i</u>	ions given in Co ons given in Co	lumn I with the spin magnetic umn II and assign the correct code :
		Colu	ımn	- I	Сс	olumn - II	
		A. C	20 ³⁺		(i)) √8 B.M.	
		РС	• <u>-</u> 3+		/::) -/2E D M	
		D. C	.[(II) ∨ 35 Б.М.	
		C. F	e ³⁺		(ii	i) √3 B.M.	
		D. N	li ²⁺		(iv	v) √15 B.M .	
	A	Α	В	С	D		
		(iv)	(v)	(ii)	(i)		
	В	A	В	С	D		
		(i)	(ii)	(iii)	(iv)		
	С	Δ	в	С	D		
				•			
		(iv)	(i)	(ii)	(iii)		
	D	Α	В	С	D		
		(iv)	(i)	(ii)	(iii)		
10		Nam	e th	e qa	s tha	at can readily de	colourise acidified KMnO ₄ solution.
	А	SO ₂					
	В	NO ₂					
	С	P ₂ O ₅					

	D	CO ₂
11		$HgCl_2$ and I_2 both when dissolved in water containing I^- ions, the
		pair of species formed is
	А	HgI ₂ , I ⁻
	В	HgI ₄ ^{2–} , I ₃ –
	С	Hg_2I_2 , I ⁻
	D	HgI ₂ , I ₃ ⁻
12		The reason for greater range of oxidation states in actinoids is
		attributed to
	А	actinoid contraction
	В	5f, 6d and 7s levels having comparable energies
	С	4f and 5d levels being close in energies
	D	the radioactive nature of actinoids.
13		Which one of the following statements related to lanthanoids is
		incorrect?
	<u>A</u>	Europium shows + 2 oxidation state.
	B	The basicity decreases as the ionic radius decreases from Pr to Lu.
	С	All the lanthanons are much more reactive than aluminium.
	D	Ce(+4) solutions are widely used as oxidizing agent in volumetric analysis.
14		The electronic configuration of Eu (Atomic No. 63), Gd (Atomic No.
		64) and Tb (Atomic No.65) are
	А	$[Xe]4f^{6}5d^{1}6s^{2}$, $[Xe]4f^{7}5d^{1}6s^{2}$ and $[Xe]4f^{8}5d^{1}6s^{2}$
	В	$[Xe]4f^7 6s^2$, $[Xe]4f^7 5d^1 6s^2$ and $[Xe]4f^9 6s^2$
	С	[Xe]4f ⁷ 6s ² , [Xe]4f ⁸ 6s ² and [Xe]4f ⁸ 5d ¹ 6s ²
	D	$Xe]4f^{6} 5d^{1} 6s^{2}$, [Xe]4f ⁷ 5d ¹ 6s ² and [Xe]4f ⁹ 6s ²
15		Which one of the following statements is correct when SO ₂ is passed
		through acidified $K_2Cr_2O_7$ solution?
	А	SO_2 is reduced.
	В	Green $Cr_2(SO_4)_3$ is formed.
	С	The solution turns blue.
	D	The solution is decolourised.
16		Magnetic moment 2.84 B.M. is given by (At. nos. Ni = 28, Ti = 22,
		Cr = 24, Co = 27)
	A	Cr ²⁺
	В	Co ²⁺
	С	Ni ²⁺
	D	Ti ³⁺
17		Reason of lanthanoid contraction is
	A	negligible screening effect of 'f'- orbitals
	В	increasing nuclear charge
	С	decreasing nuclear charge
	D	decreasing screening effect.
18	+	Sc ($Z = 21$) is a transition element but Zn ($Z = 30$) is not because
	A	both Sc ³⁺ and Zn ²⁺ ions are colourless and form white compounds.
	В	in case of Sc, 3d orbitals are partially filled but in Zn these are filled
	C	last electron is assumed to be added to 4s level in case of Zn.
	D	both Sc and Zn do not exhibit variable oxidation states.

19		Which of the following statements about the interstitial compounds is
		incorrect?
	А	They are much harder than the pure metal.
	В	They have higher melting points than the pure metal.
	С	The retain metallic conductivity.
	D	They are chemically reactive.
20		Which one of the following does not correctly represent the correct
		order of the property indicated against it?
	А	Ti < V < Cr < Mn; increasing number of oxidation states
	В	$Ti^{3+} < V^{3+} < Cr^{3+} < Mn^{3+}$: increasing magnetic moment
	С	Ti < V < Cr < Mn : increasing melting points
	D	Ti < V < Mn < Cr: increasing 2 nd ionization enthalpy
21		Which of the following exhibits only + 3 oxidation state?
	А	U
	В	Th
	С	Ac
	D	Pa
22		Four successive members of the first series of the transition metals
		are listed below. For which one of them the standard
		potential (E ⁰ M ²⁺ /M) value has a positive sign?
	A	Co (Z = 27)
	В	Ni (Z = 28)
	С	Cu (Z = 29)
	D	Fe (Z = 26)
23		The catalytic activity of transition metals and their compounds is
		ascribed mainly to
	A	their magnetic behaviour
	В	their unfilled f-orbitals
	С	their ability to adopt variable oxidation states
	D	their chemical reactivity
24		Which of the statements is not true?
	A	On passing H_2S through acidified $K_2Cr_2O_7$ solution, a milky colour is
		observed.
	В	Na ₂ Cr ₂ O ₇ is preferred over K ₂ Cr ₂ O ₇ in volumetric analysis
	C	$K_2Cr_2O_7$ solution in acidic medium is orange.
	D	$K_2Cr_2O_7$ solution becomes yellow increasing the pH beyond 7.
25		Acidified $K_2Cr_2O_7$ solution turns green when Na_2SO_3 is added to it.
		This is due to the formation of
	A	Cr ₂ (SO ₄) ₃
	В	CrO ₄ ^{2–}
	С	Cr ₂ (SO ₃) ₃
	D	CrSO ₄
26		Which of the following ions will exhibit colour in aqueous solutions?
	А	La^{3+} (Z = 57)
	В	Ti^{3+} (Z = 22)
	С	Lu^{3+} (Z = 71)
	D	Se^{3+} (Z = 21)

27		Which one of the elements with the following outer orbital
		configurations may exhibit the largest number of oxidation states?
	А	3d ⁵ 4s ¹
	В	3d ⁵ 4s ²
	С	3d ² 4s ²
	D	3d ³ 4s ²
28		The correct order of decreasing second ionisation enthalpy of Ti(22), $V(23)$, $Cr(24)$ and $Mn(25)$ is
	А	Mn > Cr > Ti > V
	В	Ti > V > Cr > Mn
	С	Cr > Mn > V > Ti
	D	V > Mn > Cr > Ti
29		Which one of the following ions is the most stable in aqueous solution?
	А	V ³⁺
	В	Ti ³⁺
	С	Mn ³⁺
	D	Cr ³⁺
30		The number of moles of KMnO ₄ reduced by one mole of KI in alkaline medium is
	А	One
	В	Тwo
	С	Five
	D	Three

ANSWER KEY

<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>Z</u>	<u>8</u>	<u>9</u>	<u>10</u>
<u>B</u>	<u>C</u>	C	Α	C	D	<u>C</u>	D	D	Δ
<u>11</u>	<u>12</u>	<u>13</u>	<u>14</u>	<u>15</u>	<u>16</u>	<u>17</u>	<u>18</u>	<u>19</u>	<u>20</u>
<u>B</u>	B	<u>C</u>	B	B	<u>C</u>	<u>A</u>	<u>B</u>	D	<u>C</u>
<u>21</u>	<u>22</u>	<u>23</u>	<u>24</u>	<u>25</u>	<u>26</u>	<u>27</u>	<u>28</u>	<u>29</u>	<u>30</u>
D	<u>C</u>	<u>C</u>	<u>B</u>	Α	<u>B</u>	<u>B</u>	<u>C</u>	D	<u>B</u>

	CHAPTER 5 : COORDI	INATION COMPOUNDS
1.	Which of the following is a complex (a) Haemoglobin (c) Ferrocene	of metal other than transition metal? (b) Chlorophyll (d) Vitamin B ₁₂
2.	Which of the following is not a doub (a) KCI.MgCl ₂ .6H ₂ O (c) K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .24H ₂ O	le salt but a coordinate compound? (b) FeSO4.(NH4)2SO4.6H2O (d) 4KCN.Fe(CN)2
3.	The donor atoms in ethylenediamine (a) two N and two O	etetraacetate ion is (b) two N and four O
	(c) four N and two O	(d) three N and three O
4.	The correct I.U.P.A.C. name of the c (a) cyclopentadienyl iron (II) (c) dicyclopentadienyl iron (II)	complex, [Fe(C ₅ H ₅) ₂] is (b) bis(cyclopentadienyl) iron (II) (d) ferrocene (0)
5.	The geometrical isomerism in coord (a) square planar and tetrahedral co	ination compounds is exhibited by omplexes
	(b) square planar and octahedral co	mplexes
	(c) tetrahedral and octahedral comp	lexes
	(d) square planar, tetrahedral, octal	hedral comp
6.	Which of the following is not opticall (a) $[Co(en)_3]^{3+}$	y active? (b) [Cr(ox) ₃] ³⁻
	(c) cis-[CoCl ₂ (en) ₂] ⁺	(d) trans-[CoCl ₂ (en) ₂] ⁺
7.	The complex ion [Cu(NH ₃) ₄] ⁺² is (a) tetrahedral and paramagnetic (c) square planar and paramagnetic	(b) tetrahedral and diamagnetic (d) square planar and diamagnetic
8.	The hybrid state of Co in high spin c	complex, $K_3[CoF_6]$ is
	(a) sp ³ d ²	(b) sp ³
	(c) d ² sp ³ ((d) sp ³ d
9.	In an octahedral crystal field, the t_{2g} (a) raised in energy by 0.4 Δ_o (c) raised in energy by 0.6 Δ_o	$_{3}$ orbital are (b) lowered in energy by 0.4 Δ_{o} (d) lowered in energy by 0.6 Δ_{o}
10.	If Δ_{\circ} < P, then the correct electronic	c configuration for d ⁴ system will be
	(a) $t_{2g}^4 e_g^0$ (b) $t_{2g}^3 e_g^1$	(c) $t_{2g^0} e_g^4$ (d) $t_{2g^2} e_g^2$
11.	The tetrahedral complexes are generation (a) $\Delta_t < P$ (b) $\Delta_t > P$	rally high spin. This is because (c) $\Delta_t = P$ (d) none of these
12.	Wilkinson's catalyst, [(Ph ₃ P) ₃ RhCl] is	s used for

	(a) hydrogenation of carboxylic acids	(b) hydrogenation of alkynes
	(c) hydrogenation of alkenes	(d) polymerization of alkenes
13.	Zeigler Natta catalyst is used for	
	(a) synthesis of methanol	(b) polymerization of olefins (d) hydrogenation of alkenes
14	Among the compounds $[Ni(CO)_4]$ -1	(u) hydrogenation of alkelies [Ni(CN) ₄] ²⁻ - 2 and [NiCl ₄] ²⁻ - 3 the
	correct statement is	
	(a) 1, 3 are diamagnetic while 2 is p	aramagnetic
	(b) 2, 3 are diamagnetic while 1 is pa	aramagnetic
	(c) 1, 2 are diamagnetic while 3 is pa	ramagnetic
	(d) 1 is diamagnetic while 2, 3 are pa	aramagnetic
15.	Which of the following is a complex s	alt?
	(a) Fischer's salt	(b) Mohr's salt
	(c) Glauber's salt	(d) Microcosmic salt
16.	Which of the following will show maxi	mum paramagnetic nature?
	$(a) [Cr(H_2O)_6]^{3}$ (D) [Fe(CN) ₆] ⁺
17	(c) $[Fe(CN)_6]^{3-}$ (d) [Cu(H ₂ O) ₆] ²⁺
17.	The correct formula of the complex formula $(a) [Fe(H_2O)_5NO]^+$	formed in the brown ring test of nitrates is (b) $[Fe(H_2O)_5NO]^{2+}$
	(c) Fe(H ₂ O) ₅ NO] ³⁺	(d) [Fe(H ₂ O) ₄ (NO ₂)]
18.	For the square planar complex, [MAB D are mono-dentate ligands, the num (a) 2 (b) 4 (c	CD] where M is central metal and A, B, C, mber of possible geometrical isomers are c) 3 (d) 5
19.	Which of the following will show optic (a) $[Cr(en)(H_2O)_4]^{3+}$	al isomerism? (b) [Cr(en) ₃] ³⁺
	(c) trans-[Cr(en)(Cl ₂)(NH ₃) ₂] ⁺	(d) [Cr(NH ₃) ₆] ⁺
20.	The primary valency of the Fe in the (a) 3 (b) 2 (c)	complex, $K_4[Fe(CN)_6]$ is c) 4 (d) 6
21.	Which of the following compound will (a) $[Co(en)_3]Cl_3$	exhibit linkage isomerism? (b) [Co(NH ₃) ₆][Cr(en) ₃]
	(c) [Co(en) ₂ (NO ₂)Cl]Br	(d) [Co(NH ₃) ₅ Cl]Br ₂
22.	Which of the following will form an oc (a) d^4 (low spin) (b	tahedral complex? b) d ⁸ (high spin)
	(c) d^6 (high spin) (c)	d) none of these
23.	The shape of cuprammonium ion is -	

	(a) tetrahedral (b) octahedral (c) trigonal (d) square planar
24.	In the complex, $[Co(NH_3)_5(CO_3)]ClO_4$, the C.N., O.N., the number of d- electrons and the number of unpaired electrons in d-orbital are respectively (a) 6, 3, 6, 0 (b) 7, 2, 7, 1
	(c) 7, 1, 6, 4 (d) 6, 2, 6, 3
25.	 When AgNO₃ is added to a solution of complex CoCl₃.(NH₃)₅, the precipitate of AgCl shows two ionizable Cl⁻. It indicates that (a) two Cl⁻ satisfy primary valency while one Cl⁻ satisfy both primary and secondary valency (b) two Cl⁻ satisfy primary valency while one Cl⁻ satisfy only secondary valency (c) all three Cl⁻ satisfy only primary valency (d) all three Cl⁻ satisfy only secondary valency
26.	The number of unpaired electrons in $[CoF_6]^{3-}$ is
	(a) 2 (b) 3 (c) 4 (d) 5
27.	The fac-mer isomerism is associated with which of the following general formula?
	(a) [M(AA') ₂] (b) [M(AA) ₃] (c) [MABCD] (d) [MA ₃ B ₃]
28.	Which of the following statement is correct? (a) [Cu(NH ₃) ₄] ²⁺ is diamagnetic while [Fe(CN) ₆] ⁴⁻ is paramagnetic (b) both are paramagnetic (c) [Cu(NH ₃) ₄] ²⁺ is paramagnetic while [Fe(CN) ₆] ⁴⁻ is diamagnetic (d) both are diamagnetic
29.	Correct configuration of complex compound [Mn (H ₂ O) ₆] ²⁺ is- (a) t $_{2g}$ ³ e $_{g}$ ² (b) t $_{2g}$ ⁵ e $_{g}$ ⁰ (c) t $_{2g}$ ⁵ e $_{g}$ ¹ (d) t $_{2g}$ ⁴ e $_{g}$ ²
30.	Hybridisation of Fe (CO) 5 with the help of Valence bond theory is - (a) dsp ² (b) d ² sp ³ (c) sp ³ d ² (d) dsp ³
31.	Vitamin B ₁₂ contains – (a) Cr (b) Fe (c) Co (d) Cu
32.	 The correct statement about [NiCl 4] ²⁻ and [Ni(CO) 4] is (a) Both are tetrahedral and paramagnetic in nature (b) Both are tetrahedral but [NiCl 4] ²⁻ is paramagnetic while [Ni(CO) 4] is diamagnetic in nature (c) c)Both are square planar and diamagnetic

	Both are square planar and paramagnetic
33.	Which of the following sequence is correct regarding field strength of ligands
	as per spectrochemical series?
	(a) SCN $^-$ < F $^-$ < CN $^-$ < CO
	(b) $F^- < SCN^- < CO^- < CO^-$
	(c) $CN^{-} < F^{-} < CO < SCN^{-}$
	(d) SCN $^{-}$ < CO < F $^{-}$ < CN $^{-}$
24	Low opin totuch adval compounds ave not formed because
34.	Low spin tetranedral compounds are not formed because $(a) A \rightarrow B$
	(a) $\Delta t > P$
	(b) $\Delta \mathbf{t} < \mathbf{P}$
	(c) $\Delta \mathbf{t} \ge P$
	(d) $\Delta_{t} > \Delta_{o}$
35	Which of the following complex ion is not expected to absorb visible light?
55.	(a) [NiCl $a = 2^{-1}$
	(a) [N(C) 4] (b) $[F_0(H_0(0), c] 3^+$
	(b) $[12(120) 6]^{-1}$
	(c) $[CF(NH 3) 6]^{3+1}$
	(d) $[NI(H_2O)_6]^{2+}$
36.	Which of the following is diamagnetic in nature?
	(a) Co ³⁺ octahedral complex with weak field ligands
	(b) Co $^{3+}$ octahedral complex with strong field ligands
	(c) Co $^{2+}$ in tetrahedral complex
	(d) Co $^{2+}$ in square planar complex
Asse	ertion Reason Type Questions:
Inst	ructions: The following questions consist two statements as Assertion and
Reas	on. While answering these questions, choose correctly any of the
follov	ving responses.
(a) If	f both Assertion and Reason are true and Reason is the correct explanation of
Asse	rtion.
(D) 11	f both Assertion and Reason are true and Reason is not the correct explanation
	Seruon. Accortion is true and Boacon is false
П (С) П (d) т	Assertion is false and Reason is true
37	Assertion: The complex $[C_0(NH_2)_2C_2]$ gives no precipitate with ΔgNO_2
57.	solution
	Reason: The above complex is non ionizable
38.	Assertion: $[Ni(CO)_4]$ is tetrahedral in shape.
	Reason: Ni atom is in zero oxidation state and undergoes sp ³ hybridization
39.	Assertion: Wilkinson's catalyst contains Ti ⁴⁺ as the metal cation.
	Reason: Wilkinson's catalyst has composition $[(Ph_3P)_3RhCl]$.
40.	Assertion: Ethylenediaminetetraacetate ion makes an octahedral complex
	with the metal ion.
	Reason: It has six donor atoms which coordinate simultaneously to the
	metal ion.
41.	Assertion: $[Cu(en)_2]^{2+}$ is more stable than $[Cu(NH_3)_4]^{2+}$.
i i	Reason: Both of these complexes have a square planar shape

42.	Assertion: Glycinate ion is an example of bi-dentate ligand.
	Reason: It contains two donor atoms per glycinate ion.
43.	Assertion: The total number of isomers shown by [Co(en) ₂ Cl ₂] ⁺ complex ion
	is three.
	Reason: [Co(en) ₂ Cl ₂] ⁺ complex ion has an octahedral geometry
44.	Assertion: The oxidation number of central ion in Zeisse's salt is +2.
	Reason: C ₂ H ₄ ligand in it has charge equal to -2
45.	Assertion : [Ni(CO) ₄] has square planer geometry and is diamagnetic in nature.
	Reason : CO is a neutral ligand which forms synergic bonding with the metal.

Answer key: Only One Correct Option Type Questi

	-		-		-		-		
1	2	3	4	5	6	7	8	9	10
b	d	b	b	b	d	С	а	b	b
11	12	13	14	15	16	17	18	19	20
а	С	b	С	а	а	b	С	а	В
21	22	23	24	25	26	27	28	29	30
С	а	b	а	а	С	d	С	а	D
31	32	33	34	35	36	37	38	39	
С	b	b	b	С	b	а	а	d	

40	41	42	43	44	45	
а	b	а	b	С	а	

Assertion Reason Type Questions:

Section AIn which of the following molecules carbon atom marked with asterisk (* asymmetric? $H_{asymmetric?}$ (a) (b) (c) (d) (A) (a) , (b) , (c) , $(d)(C)(C)(D)(C)$	
 In which of the following molecules carbon atom marked with asterisk (* asymmetric? H I H I I H I I 1 I H I I I 1 I I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <lii <="" ul=""> <th></th></lii>	
$\begin{array}{c c} H & P & H & H \\ I \stackrel{\leftarrow}{\longrightarrow} Cl & I \stackrel{\leftarrow}{\longrightarrow} Cl & OH \stackrel{\leftarrow}{\longrightarrow} CH_{s} & H \stackrel{\leftarrow}{\longrightarrow} CH_{s} \\ (a) & (b) & (c) & (d) \\ (A) (a), (b), (c), (d) \\ (B) (a), (b), (c) \\ (C) (b), (c), (d) \\ (D) (a), (c), (d) \\ \end{array}$ $\begin{array}{c c} C & Chlorobenzene is formed by reaction of chlorine with benzene in the pressore of AlCl_3. Which of the following species attacks the benzene ring in this reaction? \\ (A) Cl^{-} & (B) Cl^{+} & (C) AlCl_{3} & (D) [AlCl_{4}]^{-} \\ \end{array}$ $\begin{array}{c c} I & Identify following reaction: \\ A) & Wurtz Reaction \\ B) & Etard Reaction \\ C) & Finkelstein Reaction \\ D) & Swarts Reaction \\ D) & Swarts Reaction \\ D) & Swarts Reaction \\ A) & Benzyl chloride \\ B) o-Chloro toluene \\ C) p-Chloro toluene \\ D) & Mixture of B and C \\ \end{array}$	sk (*) is
$I \xrightarrow{f}_{Br} Cl \qquad I \xrightarrow{f}_{Br} Cl \qquad OH \xrightarrow{f}_{C,H_s} H \xrightarrow{f}_{C,H_s} C_{H_s}$ (a) (b) (c) (d) (c) (d) (d) (a), (b), (c), (d) (c) (c) (b), (c), (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
(a)(b)(c)(d)(A)(a), (b), (c), (d)(B)(a), (b), (c)(C)(b), (c), (d)(D)(a), (c), (d)2Chlorobenzene is formed by reaction of chlorine with benzene in the press of AlCl ₃ . Which of the following species attacks the benzene ring in this reaction?(A)Cl ⁻ (B)Cl ⁺ (C)(A)Cl ⁻ (B)Cl ⁺ (C)A)Wurtz Reaction B)Etard Reaction C)Finkelstein Reaction D)Swarts Reaction D)Swarts ReactionA)4The reaction of toluene with chlorine in the presence of iron and in the a of light yields A) Benzyl chlorideB)o-Chloro toluene D)Mixture of B and C5What is Q in the following reaction?	
(A) (a), (b), (c), (d) (B) (a), (b), (c) (C) (b), (c), (d) (D) (a), (c), (d) 2 Chlorobenzene is formed by reaction of chlorine with benzene in the press of AlCl ₃ . Which of the following species attacks the benzene ring in this reaction? (A) Cl ⁻ (B) Cl ⁺ (C) AlCl ₃ (D) [AlCl ₄] ⁻ 3 Identify following reaction: A) Wurtz Reaction B) Etard Reaction C) Finkelstein Reaction D) Swarts Reaction 4 The reaction of toluene with chlorine in the presence of iron and in the a of light yields A) Benzyl chloride B) o-Chloro toluene C) p-Chloro toluene D) Mixture of B and C 5 What is Q in the following reaction? $\bigcirc Cl/FeCl_{i > P} Na/ether > Q$	
(B) (a), (b), (c) (C) (b), (c), (d) (D) (a), (c), (d) 2 Chlorobenzene is formed by reaction of chlorine with benzene in the presonant of AlCl ₃ . Which of the following species attacks the benzene ring in this reaction? (A) Cl ⁻ (B) Cl ⁺ (C) AlCl ₃ (D) [AlCl ₄] ⁻ 3 Identify following reaction: $H_3C-B_T + AgF \longrightarrow H_3C-F + A$ A) Wurtz Reaction B) Etard Reaction C) Finkelstein Reaction D) Swarts Reaction 4 The reaction of toluene with chlorine in the presence of iron and in the a of light yields A) Benzyl chloride B) o-Chloro toluene C) p-Chloro toluene D) Mixture of B and C 5 What is Q in the following reaction? $\bigcirc Cl/FeCl_{\rightarrow P} Na/ether > Q$	
 (C) (b), (c), (d) (D) (a), (c), (d) Chlorobenzene is formed by reaction of chlorine with benzene in the press of AlCl₃. Which of the following species attacks the benzene ring in this reaction? (A) Cl⁻ (B) Cl⁺ (C) AlCl₃ (D) [AlCl₄]⁻ Identify following reaction: A) Wurtz Reaction B) Etard Reaction C) Finkelstein Reaction D) Swarts Reaction 4 The reaction of toluene with chlorine in the presence of iron and in the a of light yields A) Benzyl chloride B) o-Chloro toluene C) p-Chloro toluene D) Mixture of B and C 5 What is Q in the following reaction? 	
 (D) (a), (c), (d) Chlorobenzene is formed by reaction of chlorine with benzene in the presof AlCl₃. Which of the following species attacks the benzene ring in this reaction? (A) Cl⁻ (B) Cl⁺ (C) AlCl₃ (D) [AlCl₄]⁻ Identify following reaction: H₃C-Br + AgF → H₃C-F + A A) Wurtz Reaction B) Etard Reaction C) Finkelstein Reaction D) Swarts Reaction A) Benzyl chloride B) o-Chloro toluene D) Mixture of B and C What is Q in the following reaction? 	
 2 Chlorobenzene is formed by reaction of chlorine with benzene in the presof AlCl₃. Which of the following species attacks the benzene ring in this reaction? (A) Cl⁻ (B) Cl⁺ (C) AlCl₃ (D) [AlCl₄]⁻ 3 Identify following reaction: A) Wurtz Reaction B) Etard Reaction C) Finkelstein Reaction D) Swarts Reaction 4 The reaction of toluene with chlorine in the presence of iron and in the a of light yields A) Benzyl chloride B) o-Chloro toluene C) p-Chloro toluene D) Mixture of B and C 5 What is Q in the following reaction? 	
(A) CI^- (B) CI^+ (C) $AICI_3$ (D) $[AICI_4]^-$ 3Identify following reaction: A) Wurtz Reaction B) Etard Reaction C) Finkelstein Reaction D) Swarts Reaction $H_3C-Br + AgF \longrightarrow H_3C-F \oplus H_3C \oplus H_3C \longrightarrow H_3C-F \oplus H_3C \oplus H_3C$	presence his
 3 Identify following reaction: A) Wurtz Reaction B) Etard Reaction C) Finkelstein Reaction D) Swarts Reaction 4 The reaction of toluene with chlorine in the presence of iron and in the a of light yields A) Benzyl chloride B) o-Chloro toluene C) p-Chloro toluene D) Mixture of B and C 5 What is Q in the following reaction? CL/FeCl., p. Na/ether, Q 	
 The reaction of toluene with chlorine in the presence of iron and in the a of light yields A) Benzyl chloride B) o-Chloro toluene C) p-Chloro toluene D) Mixture of B and C What is Q in the following reaction? 	+ AgBr
 A) Benzyl chloride B) o-Chloro toluene C) p-Chloro toluene D) Mixture of B and C 5 What is Q in the following reaction? 	he absence
 B) o-Chloro toluene C) p-Chloro toluene D) Mixture of B and C 5 What is Q in the following reaction? 	
C) p-Chloro toluene D) Mixture of B and C 5 What is Q in the following reaction? CL/FeCL ₃ P_Na/ether→Q	
D) Mixture of B and C What is Q in the following reaction? CL/FeCl ₃ P_Na/ether Q	
5 What is Q in the following reaction? $O \xrightarrow{Cl_2/FeCl_3} P \xrightarrow{Na/ether} Q$	
$\bigcirc \xrightarrow{\text{Cl}_{s}/\text{FeCl}_{s}} P \xrightarrow{\text{Na/ether}} Q$	
(a) \bigcirc^{Cl} (b) \bigcirc^{CH} (c) \bigcirc^{Ol} (d) \bigcirc^{OH}	

6	Which of the following is the correct order of decreasing $S_N 2$
	reactivity? A) $RCH_2X > R_2CHX > R_3CX$
	B) $R_3CX > R_2CHX > RCH_2X$
	C) $R_2CHX > R_3CX > RCH_2X$
	D) $RCH_2X > R_3CX > R_2CHX$
7	Which of the following is correct for the reaction
	$CH_{3} - CH_{2} - CH_{2} - CH_{3} \xrightarrow{\text{alc. ROH}} heat$
	Br
	$(A) \qquad (B)$
	a) A is major product and B is minor product
	b) B is major product and A is minor product
	c) Only A will be obtained as a product
	d) Only B will be obtained as a product
8	Tertiary alkyl halides are practically inert to substitution by SN 2 mechanism
	because of
	(A) steric hindrance
	(C) instability
	(D) insolubility
9	Match the reactions given in Column I with the names given in Column II.
	(i) $X + RX \xrightarrow{Na} R$ (a) Fittig reaction
	x
	(ii) 2 $+ 2Na \xrightarrow{\text{Ether}} + 2Na \xrightarrow{\text{Ether}} + 2NaX$ (b) Wurtz Fittig reaction
	(iii) $\xrightarrow{\stackrel{+}{N_2 X_2}} \xrightarrow{\stackrel{-}{Cu_2 X_2}} \xrightarrow{\stackrel{-}{V_2 X_2}} \xrightarrow{\stackrel{+}{V_2 X_2}} \xrightarrow{\stackrel{-}{V_2 X_2$
	(iv) $C_2H_5Cl+Nal \xrightarrow{dry acetone} C_2H_5I + NaCl$ (d) Sandmeyer reaction
	A) i-a, ii-b ,iii-c, iv-d
	B) i-b, ii-a , iii-d, iv-c
	C) i-d, ii-b ,iii-c, iv-a
	D) i-c, ii-a ,iii-b, iv-d
10	Alkyl fluorides are synthesised by heating an alkyl chloride/bromide in presence of_

	(A) CaF ₂					
	(B) PF ₃					
	(C) Hg ₂ F ₂					
	(D) NaF					
11	Haloalkanes contain halogen atom (s) attached to the sp ³ hybridised carbon atom of an alkyl group. Identify haloalkane from the following compounds.					
	(A) 2-Bromopentane					
	(B) Vinyl chloride (chloroethene)					
	(C) 2-chloroacetophenone					
	(D) chlorobenzene					
12	Alkyl halides are prepared from alcohols by treating with					
	(A) HCl + $ZnCl_2$					
	(B) Red P + Br_2					
	(C) PCI ₅					
	(D) All the above					
13	Match the structures given in Column I with the names in Column II.					
	Column I Column II					
	(i) (a) 4-Bromopent-2-ene					
	(ii) Br (b) 4-Bromo-3-methylpent-2-ene					
	(iii) (c) 1-Bromo-2-methylbut-2-ene					
	(iv) Br (d) 1-Bromo-2-methylpent-2-ene					
	A) i-a, ii-b ,iii-c, iv-d					
	B) i-b, ii-a, iii-d, iv-c					
	C) i-d, ii-b ,iii-c, iv-a					
	D) i-a, ii-d, iii-c, iv-b					
14	Which is the correct increasing order of boiling points of the following compounds? 1-Iodobutane, 1-Bromobutane, 1-Chlorobutane, Butane					
	(A) Butane < 1-Chlorobutane < 1-Bromobutane < 1-Iodobutane					
	(B) 1-Iodobutane < 1-Bromobutane < 1-Chlorobutane < Butane					

	(C) Butane < 1-Iodobutane < 1-Bromobutane < 1-Chlorobutane
	(D) Butane < 1-Chlorobutane < 1-Iodobutane < 1-Bromobutane
15	Aryl halides are less reactive towards nucleophilic substitution reactions as compared to alkyl halides due to
	(a) formation of a less stable carbonium ion in aryl halides
	(b) resonance stabilization in aryl halides
	(c) presence of double bonds in alkyl halides
	(d) inductive effect in aryl halides
16	p-dichlorobenzene has higher melting point than its o- and m- isomers. Why?
	(a) m- dichlorobenzene is more polar than o-isomer
	(b) p-isomer has a symmetrical crystalline structure
	(c) boiling point of o- isomer is more than p-isomers
	(d) All of these are correct
17	Which of the following is most reactive towards aqueous NaOH?
	(a) C_6H_5CI (b) $C_6H_5CH_2CI$ (c) C_6H_5Br (d) BrC_6H_4Br
18	Which of the following haloalkanes is optically active?
	(a) 1-Chloropropane (b) 2-Bromobutane
19	The general reaction, $R-X + aq$. $OH^{} \rightarrow ROH+X^{-}$ is expected to follow
	decreasing order of reactivity as in (t- Bu = tertiary Butyl group)
	(a) t-BuI> t-BuBr > t-BuCl > t-BuF (b) t-BuF> t-BuCl > t-BuBr > t-BuI
	(c)t-Bu'Br> t-BuCI > t-BuI > t-BuF (d) t-BuF> t-BuCI > t-BuI > t-BuBr
20	Which of the following alcohols will yield the corresponding alkyl chloride on
	(a) CH_CHCHOH
	(b) CH ₃ CH ₂ —CH—OH
	CH ₃
	(c) CH ₃ CH ₂ —CH—CH ₂ OH
	CH ₃
	CH3
	(d) CH ₃ CH ₂ -C-OH
	ĊH ₃

21	Which of the following structures is enantiome	ric with the molecule (A) given
	Delow .	
	H L MMM [*] CH ₃	
	H ₅ C ₂ Br	
	(A)	
	(i) H_3C H_5 (ii) H_2C H_5 H_3 H_3C H_3 H_3 H_3C H_3	H C ₂ H ₅
	(iii) H_3C C_2H_5 (iv) H_5C_2	u ^{ur} H CH₃
	(a) i (b) ii (c) iii (d) iv	
22	Column I	Column II
	(A) CH ₃ CH(Br)CH(CH ₃)CH ₃ + C ₂ H ₅ ONa \rightarrow	(i) β-elimination
	$(B) CH_3CH_2Br \underline{AgOH}$	(ii) SN ¹ nucleophilic
	$CH_{3}CH_{2}OH$	substitution
	CH ₃ CH ₂ CH ₂ Br	substitution
	(D) $CH_3-CH_2Br + alc. K\ThetaH \rightarrow$ $CH_2=CH_2$	(iv) Kharash effect
	(a) $A=(i)$, $B=(iv)$, $C=(ii)$, $D=(iii)$	·
	(c) $A=(ii), B=(iii), C=(iv), D=(ii)$ (c) $A=(ii), B=(iii), C=(iv), D=(i)$	
Giver	(d) A=(iii),B=(i), C=(ii), D=(iv)	rtion" (A) and "Reason" (R) Type
quest	tions. Use the following Key to choose the appro	opriate answer.
A.If	both (A) and (R) are true, and (R) is the co	prrect explanation of (A).
B.If	both (A) and (R) are true but (R) is not the	e correct explanation of (A).
C.If	(A) is true but (R) is false.	
D.If	(A) is false but (R) is true.	
23	Assertion : Presence of a nitro group at ortho or reactivity of haloarenes towards nucleophilic su	or para position increases the ubstitution.

	Reason : Nitro group, being an electron withdrawing group decreases the electron density over the benzene ring.
24	Assertion : It is difficult to replace chlorine by –OH in chlorobenzene in comparison to that in chloroethane. Reason : Chlorine-carbon (C—Cl) bond in chlorobenzene has a partial double bond character due to resonance.
25	Assertion: Chlorobenzene is less reactive than benzene towards the electrophilic substitution reaction. Reason: Resonance destabilises the carbo cation.
26	Assertion: The C–Cl bond length in chlorobenzene is shorter than that in CH ₃ –Cl. Reason: In haloarenes Cl is attached to sp ² hyridised carbon which is more electronegative than sp ³ hybridised carbon.
27	 Assertion (A) : The hydrolysis of chloro-benzene can be made hard by introduction of nitro groups on benzene ring. Reason : Nitro group engage negative charge in resonance so hydrolysis becomes hard.
28	$\begin{array}{l} \textbf{Assertion}: SN_2 \text{ reaction of an optically active aryl halide with an aqueous}\\ \text{solution of KOH always gives an alcohol with opposite sign of rotation.}\\ \textbf{Reason}: SN_2 \text{ reactions always proceed with inversion of configuration} \end{array}$
29.	Assertion : Alkylbenzene is not prepared by Friedel-Crafts alkylation of benzene.Reason : Alkyl halides are less reactive than acyl halides
30.	ASSERTION – The compounds which can rotate the plane polarised light when it is passed through its solution are called optically active compounds
	REASON – If the compound rotates the plane polarised light to right, it is called dextrorotatory.

1 B	2 B	3 D	4 D	5 C	6 A	7 A	8 A	9 B
10 C	11 A	12 D	13 A	14 A	15 B	16 B	17 B	18 B
19 A	20 D	21 A	22 C	23 A	24 A	25 A	26 B	27 D
28 D	29 D	30 B						

	CHAPTER-7 ALCOHOLS, PHENOLS AND ETHERS
1.	When "propene (CH ₃ -CH=CH ₂)" treated with H ₂ O/dil.H ₂ SO ₄ (hydration) the product 'X' is formed, and when this is treated with $B_2H_6/H_2O_2(OH^-)$) the product 'Y' is formed. The correct information about 'X' and 'Y' is_
	(A) X = propan-1-ol; Y = propan-2-ol
	(B) X = propan-2-ol; Y = propan-1-ol
	(C) X = propanal; Y = propanone
	(D) X = propanone; Y = propanal
2.	Which of the reagents/test can be used to distinguish propan-1-ol and propan-2-ol?
	(A) Lucas reagent and Iodoform test
	(B) Iodoform test and Tollens Reagent
	(C) Tollen's reagent and Fehling's test
	(D) Lucas reagent and Fehling's test
3.	Which one is an example of allylic alcohol?
	(A) Prop-2-en-1-ol
	(B) but-2-en-2-ol
	(C) Prop-1-en-1-ol
	(D) Prop-1-en-2-ol
4.	The correct increasing reactivity order of following alcohols towards Lucas reagent is among: - 2-butanol, 1-butanol, 2-methyl-2-propanol is:
	(A) butan-2-ol > butan-1-ol > 2-methyl-propan-2-ol
	(B) butan-2-ol < butan-1-ol < 2-methyl propan-2-ol
	(C) butan-1-ol > butan-2-ol > 2-methyl propan-2-ol
	(D) butan-1-ol < butan-2-ol < 2-methyl propan-2-ol
5.	The IUPAC name of optically active compound/isomer of alcohol having molecular formula C_4H_9OH is:
	(A) butan-1-ol.
	(B) butan-2-ol.
	(C) 2-methyl prop-1-ol.
	(D) 2-methyl prop-2-ol.
6.	Aspirin possesses analgesic, anti-inflammatory and antipyretic properties. It is obtained by acetylation of_
	(A) o-Hydroxy benzoic acid
	(B) m-Hydroxy benzoic acid

	(C) o-Dihydroxy benzene
	(D) Phenol
7.	Alcohols are produced by the reaction of Grignard reagents with aldehydes and ketones. Addition of ethyl magnesium bromide (Grignard's reagent) on acetone followed by hydrolysis gives:
	(A) 2-methyl butan-1-ol
	(B) butan-2-ol
	(C) 2-methyl propan-2-ol
	(D) 2-methyl butan-2-ol
8.	In the structural aspects of methanol, phenol and methoxymethane the bond angle order is:
	(A) phenol < methoxymethane < Methanol
	(B) methoxymethane < Methanol< phenol
	(C) methanol< phenol < methoxymethane
	(D) phenol < methanol < methoxymethane
9.	Arrange the following sets of compounds in order of their increasing boiling points:
	(A) ethanol < butan-1-ol < butan-2-ol < pentan-1-ol.
	(B) ethanol < Pentan-1-ol < butan-1-ol < butan-2-ol
	(C) Pentan-1-ol < butan-1-ol < butan-2-ol < ethanol
	(D) ethanol < butan-2-ol < butan-1-ol < pentan-1-ol.
10	The commercial alcohol is made unfit for drinking by mixing in it some copper sulphate (to give it a colour) and pyridine (a foul-smelling liquid). It is known as:
	(A) Neutralization of alcohol
	(B) Denaturation of alcohol
	(C) Saturation of alcohol
	(D) Formation of rectified spirit
11.	Identify 'X' and 'Y' in the reaction when phenyl methyl ether heated with HI
	OCH ₃
	$+ HI \rightarrow 'x' + 'y'$
	(A) Iodo benzene and phenol
	(B) Phenol and iodomethane

	(C) sp ² hybridised Carbon
	(D) sp ³ d hybridised Carbon
30.	Among the following sets of reactants which one produces anisole?
	(A) CH₃CHO: RMgX
	(B)C ₆ H₅OH; NaOH, CH₃I
	(C) C ₆ H₅OH, neutral FeCl ₃
	(D) C ₆ H ₅ —CH ₃ ; CH ₃ COCI; AICI ₃
	ASSERTION REASONING BASED QUESTIONS:
	DIRECTIONS for the question no 31 to 36:
	In each of the question given below, there are two statements marked as Assertion (A) and Reason (R). Mark your answer as per the codes provided below:
	(A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
	(B) Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
	(C) Assertion is true but Reason is false.
	(D) Assertion is false but Reason is true.
31.	ASSERTION: Water is more acidic than Alcohols.
	REASON: In Alcohols the polarity of O-H bond decreases due to +I effect of alkyl R-group.
32.	ASSERTION: The reaction of Grignard reagent with formaldehyde followed by hydrolysis gives primary alcohol.
	REASON: Primary (1°) alcohols are more acidic than 2° (sec) or 3°(tert.) Alcohols.
33.	ASSERTION: Phenol yields a mixture of ortho and para nitrophenols with dilute nitric acid at low temperature (298 K).
	REASON: The ortho and para isomers of nitrophenol can be separated by steam distillation.
34.	ASSERTION: Ethers containing substituted alkyl groups (secondary or tertiary) can be prepared by Williamson Ether synthesis
	REASON: Williamson ether synthesis reaction involves SN1 attack of an alkoxide ion on primary alkyl halide. Better results are obtained if the alkyl halide is tertiary.
35.	ASSERTION: Primary (1°) alcohols produce white ppt with Lucas Reagent immediately.
	REASON: Lucas Reagent is a mixture of anhydrous ZnCl ₂ and concentrated HCl.
36.	ASSERTION: Boiling points of alcohols and phenols are higher in comparison to other classes of compounds, namely hydrocarbons, ethers, haloalkanes and haloarenes of comparable molecular masses

REASON: The high boiling points of alcohols are mainly due to the presence of intermolecular hydrogen bonding in them which is lacking in ethers and hydrocarbons.

READ THE PARAGRAPH AND GIVE ANSWER THE QUESTIONS:

Alcohol and ether are isomeric in nature having formula $C_nH_{(2n+2)}O$. According to IUPAC nomenclature, alcohol and ether are named as alkanol and alkoxyalkane respectively. Alcohol are more soluble in water than ethers due to hydrogen bonding. Among isomeric alcohols the solubility depends up on no of carbon atoms in alcohol. Alcohols undergo dehydration in the presence of protic acids (H₂SO₄, H₃PO₄). The formation of the reaction product, alkene or ether depends on the reaction conditions. For example, ethanol is dehydrated to ethene in the presence of sulphuric acid at 443 K. At 413 K, ethoxyethane is the main product.

 $CH_{3}CH_{2}OH \longrightarrow \begin{array}{c} H_{2}SO_{4} \\ 443 \text{ K} \\ H_{2}SO_{4} \\ H_{2}SO_{4} \\ 413 \text{ K} \\ \end{array} CH_{2}H_{5}OC_{2}H_{5} \\ \end{array}$

For example, when ethanol undergoes acid catalyzed dehydration then it can form either ethene or ethoxyethane depends up on conditions applied.

37.	Which is an isomeric alcohol of ethoxyethane:
	(A) pentan-1-ol
	(B) 2-methyl butan-1-ol
	(C) propanol
	(D) 2-methyl propan-1-ol
38.	Which statement is not true;
	(A) ethanol and methoxy ethane are functional isomers.
	(B) boiling point of alcohol is higher than corresponding ethers.
	(C) ethanol is more soluble than propanol.
	(D) ethanol gives ethene when dehydrated at 443 K temp. with low conc. of ethanol.
39.	The correct order of rate of acid catalyzed dehydration of isomeric alcohol is:
	(A) 3° alcohol < 2° alcohol < 1° alcohol
	(B) 1° alcohol < 3° alcohol < 2° alcohol
	(C) 1° alcohol = 2° alcohol = 3° alcohol
	(D) 1º alcohol < 2º alcohol < 3º alcohol
40.	Which pair of alcohols can give same alkene on catalytic dehydration in appropriate conditions:
	(A) Propan-1-ol and butan-1-ol

(B) Propan-1-ol and propan-2-ol

(C) Butan-1-ol and butan-2-ol

(D) Butan-1-ol and 2-methyl proan-1-ol

				ANS	WER KE	ΞY				
1.B	2.A	3.A	4.D	5.B	6.A	7.D	8.C	9.D	10.B	
11.B	12.B	13.C	14.B	15.A	16.D	17.C	18.C	19.C	20.A	
21.C	22.B	23.B	24.A	25.C	26.D	27.B	28.C	29.C	30.B	
31.A	32.B	33.B	34.C	35.D	36.A	37.D	38.A	39.D	40. B	

	<u>CHAPTER</u> 8 : ALDEHYDE, KETONES AND CARBOXYLIC ACID
1	Acetone combines with ethylene glycol in dry HCl gas to generate
	(a) hemiacetal
	(b) hemiketal
	(c) cyclic ketals
-	(d) acetals
2	Which of the compounds is formed when benzyl alcohol is oxidized
	(a) benzele
	(b) benzoldebyde
	(c) benzaluenyde (d) carbon dioxido, wator
3	Which compound is least soluble in water
5	(a) ethanal
	(b) methanal
	(c) hexanal
	(d) propanal
4	When benzaldebyde and formaldebyde are beated in aqueous NaOH solution
	they form
	(a) Methanol and sodium benzoate
	(b) sodium formate and benzyl alcohol
	(c) methanol and benzyl alcohol
	(d)benzoyl alcohol and sodium benzoate
5	When a mixture of sodium benzoate and soda lime is heated it produces
	(a) calcium benzoate
	(b) sodium benzoate
	(c) benzoic acid
	(d) benzene
6	Write the IUPAC name of CH ₃ -CH ₂ CH ₂ CH=CH-CHO
	(a) hex-2-enal
	(b) pent-2-enal
	(c) but-en-al
	(d) hexenone
7	What is the correct IUPAC name of methylcyclohexanone
	(a) 2-methylcyclohexanone
	(b) cyclo methyl hexane-2-one
	(c) 3-methyl cyclohexanone
	(d) methylcyclohexan-2-one
8	How can pentan-2-one and pentan-3-one can be differentiated (a) tollen's test
	(b) jodoform test
	(c) fehling's test
	(d) benedict test
9	Formic acid and ethanoic acid can be distinguished by
	(a) iodoform test
L	

	(b) tollen's test
	(c) sodium bi carbonate test
	(d) litmus test
10	The oxidation of toluene to benzaldehyde by chromyl, chloride is called
	(a) Etard reaction
	(b) Riemer-Tiemann reaction
	(c) Wurtz reaction
	(d) Cannizzaro's reaction
11	The addition of HCN to carbonyl compounds is an example of
	(a) nucleophilic addition
	(b) electrophilic addition
	(c) free radical addition
	(d) electromeric addition
12	Aldehydes other than formaldehyde react with Grignard's reagent to give
	addition products which on hydrolysis give
	(a) tertiary alcohols
	(b) secondary alcohols
	(c) primary alconois
10	(d) carboxylic acids
13	(a) Phonyl acotaldobydo
	(a) Filenyi acetaluenyue
	(b) Z-Metriyipentaria (c) Reprodebyde
	(c) benzaluenyue
1.4	(d) 1-Phenypropanone
14	(a) benzoic acid
	(b) benzylalochol
	(c) benzovi sulphate
	(d) benzaldebyde
15	Which of the following acids does not form anhydride?
15	(a)Formic add
	(b) Acetic acid
	(c)Propionic add
	(d) n-butyric acid
16	The acid which does not contain -COOH group is
	(a) Ethanoic acid
	(c) Picric add
	(d)Palmitic acid
17	HVZ reaction is used to prepare
	(a) ß-haloacid
	(b)a-haloacid
	(c) a, B-unsaturated add
10	(a) None of these
10	Γ_{3} H ₆ O and and a ketone. The ketone is
	(a)2-butanone
L	

	(b) 2-pentanone
	(c)3-pentanone
	(d) propanone
19	Acetaldol is a condensation product of
	(a) two molecules of ethanal
	(b) two molecules of propanone
	(c) ethanal and methanal
20	(d) ethanal and propanone
20	The most suitable reagent for the conversion of R-CH ₂ OH \rightarrow RCHO is
	$(a) \text{KMIIO}_4$ $(b) \text{K}_2 \text{Cr}_2 \text{O}_2$
	$(D) R_2 C r_2 O $
	(c) CrO3 (d) PCC (Pyridimiumchlorochromate)
21	Which one the following can be oxidized to the corresponding carbonyl
21	compound?
	(a) 2-Hydroxypropane
	(b) o-Nitrophenol
	(c) Phenol
	(d) 2-Hydroxy-2-methyl propane
22	Name the alkene that on ozonolysis will give ketone only
	(a)2,3 dimethyl but -2-ene
	(b) 2,3 dimethyl but -1-ene
	(c) 2,2 di methyl but -1-ene
	(d) 2- Methyl prop -1- ene
23	Benzoic acid reacts with conc. HNO_3 and $conc.H_2SO_4$ to give
	(a) o-nitrobenzoic acid
	(b) p-nitrobenzoic acid
	(c) m-nitrobenzoic acid
24	(d) o,p-dinitrobenzoic acid
24	Carbonyl compounds undergo nucleophillic addition because of
	(a) More stable anion with negative charge on oxygen and less stable
	(b) Electromoric effect
	(b) Electronegativity difference of carbon and oxygen atoms
	(d)None of these
25	Cyanobydrin of which of the following will yield lactic acid?
25	(a) HCHO
	$(h) CH_2COCH_2$
	$(c) CH_2CH_2CHO$
26	
26	Which of the following will not give iodoform test?
	(a) Ethanol
	(b) Ethanal
	(c) Pentan-3-one
	(d) Pentan-2-one
27	Propanone can be prepared from ethyne by
	(a) passing a mixture of ethyne and steam over a catalyst, magnesium at
	420°C
	(b) passing a mixture of ethyne and ethanol over a catalyst zinc chromite

	(c) boiling ethyne with water in the presence of HgSO ₄ and H_2SO_4 (d) treating ethyne with iodine and NaOH
28	a-Hydroxypropanoic acid can be prepared from ethanal by following
	the steps given in the sequence
	(a) Ireat with HCN followed by acidic hydrolysis (b) Treat with NaHSO, followed by reaction with Na ₂ CO ₂
	(c) Treat with H_2SO_4 followed by hydrolysis
	(d) Treat with $K_2Cr_2O_7$ in presence of sulphuric acid
29	Which of the following is the correct order of relative strength of acids?
	(a) CICH ₂ COOH > BrCH ₂ COOH > FCH ₂ COOH
	(b) $BrCH_2COOH > CICH_2COOH > FCH_2COOH$
	(c) $FCH_2COOH > CICH_2COOH > BrCH_2COOH$
	(d) $CICH_2COOH > FCH_2COOH > BrCH_2COOH$
30	The correct order of increasing acidic strength is
	(a) phenol < ethanol <chloroacetic <="" acetic="" acid="" acid<="" th=""></chloroacetic>
	(b) ethanol < phenol < acetic acid < chloroacetic acid (c) ethanol < phenol < acetic acid < chloroacetic acid
	(d) chloroacetic acid < acetic acid < phenol < ethanol
31	The reagent which does not react with both, acetone and
	benzaldehyde is
	(a) Sodium hydrogensulphite
	(b) Phenyl hydrazine
	(c) Fehling's solution
	(d) Grignard reagent
32	Which of the following compounds will give butanone on oxidation with alkaline KMnO4 solution?
	(a) Butan-1-ol
	(b) Butan-2-ol
	(c) Both of these
	(d) None of these
33	A liquid was mixed with ethanol and a drop of concentrated H2SO4 was
	added. A compound with a fruity smell was formed. The liquid was
	(a) CH₃OH
	(b) HCHO
	(c) CH ₃ COCH ₃
-	(d) CH ₃ COOH
34	When ethanal reacts with CH_3MgBr and C_2H_5OH/dry HCl, the product formed
	(a) methyl alcohol and 2-propanol
	(b) ethane and hemiacetal
	(c) 2-propagol and acetal
	(d) propane and methyl acetate
35	Which of the following reaction will not result in the formation of carbon-
	carbon bond?
	(a) Friedel-Craft acyation
	(b) Wurtz reaction

	(c) Cannizzaro reaction
	(d) Reimer-Timann reaction
36	Wolf-Kishnerreauction is
	(a) reducation of carbonyl compound into alcohol
	(b) reducation of carbonyl compound into alkene
	(c) reduction of carboxyl compound into alkane
	(d) reduction of nitor compound into aniline
37	Imine derivative of aldehyde and ketone is called as
	(a) Schiff's reagent
	(b) Fening S reagent
	(c) Schiff's base
20	
38	The acid formed when propyl magnesium bormide is treated with CO2 is :
	$(a) C_3 H_2 COOH$
	(c) both
	(d) d-None of these
30	Which one of the following reagents is used for the conversion of ethanoic
55	acid to ethanoicanhydride ?
	(a) P ₂ O ₅
	(b) SOCl ₂
	(c) PCl ₃
	(d) both (a) and (b)
40	IUPAC name of ethyl isopropyl ketone is
	(a) 4-methyl pent-3-one
	(b) 2-methyl pent-3-one
	(c) 4-methyl pent-2-one
Tre 4	(d) 2-methyl pent-2-one
IN T	me following questions from 41-50 a statement of assertion following choices
(A	Assertion and reason both are correct and reason is correct explanation of
	assertion.
(В	Assertion and reason both are correct statements but reason is not correct
	explanation of assertion.
(C	Assertion is correct statement but reason is wrong statement.
(D	Assertion is wrong statement but reason is correct statement.
-	
41	Assertion: Lower aldehyde and ketones are soluble in water but the solubility
	decreases as molecular mass increases.
42	Reason: Aldehydes and ketones can be distinguished by Fehling's reagent.
42	Assertion: Acetophenone and benzophenone cannot be distinguished by the indoform test
	Reason: Acetophenone and benzophenone both are carbonyl compounds.
43	Assertion: Ketones are less reactive than aldehydes towards nucleophilic
	addition reaction.

	Reason: Aldehydes have more electro positive character of its carbonyl group and less steric hindrance than ketones.
44	Assertion: Even though there are two NH_2 groups in semi carbazide, only one reacts with carbonyl compounds.
	Reason: Semi carbazide has two NH ₂ groups out of which one is in resonance with the carbonyl group.
45	Assertion: Aldehydes react with Tollen's reagent to form silver mirror. Reason: Both, aldehydes and ketones contain a carbonyl group.
46	Assertion: Ethanal and Acetophenone both gives positive iodoform test. Reason: Only Ethanal have required $-COCH_3$ group A.
47	Assertion: Propanal is more reactive than CH ₃ CHO. Reason- Due to the presence of alkyl groups on both sides of the carbonyl carbon, propanone is sterically more hindered than CH ₃ CHO, making it less reactive to nucleophilic attack.
48	Assertion: HCHO is more reactive than CH_3COCH_3 towards reaction with HCN. Reason: HCHO is more polar and has less steric hindrance therefore more reactive with HCN than CH_3COCH_3 .
49	Assertion: There is a -NH ₂ groups in Benzamide even it is slightly acidic in nature Reason: Its due to steric hindrance and electronic effect .
50	Assertion: Carboxylic acids have greater boiling point than alcohols and amines having same no of carbon atoms Reason: Carboxylic acid have the greater ability to form dimers in solution due to H-bonding.

ANSWERS
MULTIPLE CHOICE QUESTIONS
1.(c) 2. (b) 3. (c) 4. (b) 5. (d) 6. (a) 7. (a) 8. (b) 9. (b) 10. (a)
11. (a) 12. (b) 13. (c) 14. (d) 15. (a) 16. (c) 17. (b) 18. (a) 19. (a) 20. (d)
21. (a) 22. (a) 23. (c) 24. (a) 25. (d) 26. (c) 27. (c) 28. (a) 29. (c) 30. (c)
31. (c) 32. (b) 33. (d) 34. (c) 35. (c) 36. (c) 37. (c) 38. (a) 39. (a) 40. (b)
ASSERTION- REASONS
41. (B) 42. (B) 43. (A) 44. (A) 45. (B) 46. (C) 47. (D) 48. (A) 49. (C) 50. (A)

	CHAPTER 9- AMINES
1	Amongst the following, the strongest base in aqueous medium is(A) CH_3NH_2 (B) $NC-CH_2NH_2$ (C) $(CH_3)_2NH$ (D) $C_6H_5NHCH_3$
2	Methylamine on treatment with chloroform and ethanolic KOH gives foul smelling compound, the compound is(A) CH3NCO(B) CH3CNO(C) CH3CN(D) CH3NC
3	Benzylamine may be alkylated as shown in the following equation: $C_6H_5CH_2NH_2 + R-X \rightarrow C_6H_5CH_2NHR$ Which of the following alkylhalides is best suited for this reaction through S_N1 mechanishm ?(A) CH_3Br (B) C_6H_5Br (C) $C_6H_5CH_2Br$ (D) C_2H_5Br
4	The best reagent for converting 2-phenylpropanamide into 1- phenyl ethanamine is(A) excess H2(B) Br2 in aqueous NaOH(C) I2 inpresence of red P(D) LiAlH4 in ether
5	$\begin{array}{ccc} C_{6}H_{5}NO_{2} & \rightarrow ^{Sn/HCl} & A \rightarrow & ^{NaNO2/HCl} & B; \mbox{ To obtain benzene from B, the suitable reagent is:} \\ (A) SnCl_{2} + HCl & (B) H_{3}PO_{2} \\ (C) C_{2}H_{5}N_{2}Cl & (D) CH_{3}OH \end{array}$
6	Hoffmann Bromamide Degradation reaction is shown by(A) ArNH2(B) ArCONH2(C) ArNO2(D) ArCH2NH2
7	The correct IUPAC name of CH2=CH-CH2NHCH3 is:(A) Allyl methyl amine(B) 2-amino-4-pentene(C) 4-aminopent-1-ene(D)N-methylprop-2-en-1-amine
8	The correct order of basic strength for the following compound is:
	(i) NH_2 (ii) NH_2 (iii) NH_2 (iii) NH_2 (iii) NH_2 (iii) NH_2 (iii) NH_2 (iii) NH_2 (iii) NH_2 (iii) NH_2
	(A) ii <iii<i (b)="" iii<i<ii<br="">(C) iii<ii<i (d)="" ii<i<iii<="" th=""></ii<i></iii<i>
9	 Which of the following statements concerning methylamine is correct? (A) Methylamine is less basic than NH₃ (B) Methylamine is stronger base than NH₃ (C) Methylamine is slightly acidic (D) Methylamine forms salts with alkali
10	Hinsberg reagent is used to separate the mixture of different amines. Which ofthe following does not react with Hinsberg reagent?(A) C2H5NH2(B) (CH3)2NH(C) (CH3)3N(D) CH3CHNHCH3

11	What is the correct order of boiling points of the isomeric amines where
	P=ethylmethylamine, Q=propylamine and R=trimethylamine?
	(A) P > Q > R (B) R > Q > P
	$(C) Q > R > P \qquad (D) Q > P > R$
12	Considering the basic strength of amines in aqueous solution which one has the
	smallest pk _b value?
	$(A) (CH_3)_2 NH (B) C_6 H_5 NH_2$
	(C) CH_3NH_2 (D) $(CH_3)_3N$
13	A compound Z with molecular formula C_3H_9N reacts with $C_6H_5SO_2Cl$ to give a
	solid, insoluble in alkali. Identify Z.
	$(A) (CT3)_{31N} (B) CT_3 CT_2 NTCT_3 (C) CH_2 CH_2 CH_2 NH_2 (D) CH_2 (D) CH_2 NH_2 (D) CH_2 (D) CH_$
1.4	(C) CH3CH2CH2NH2 (D) CH3NH2
14	and "O". After that she forget the labeling of test-tubes. Which chemical test
	being ber to identify both the amines?
	(A) Carbylamine test (B) Hinsherg test
	(C) Azodve test (D) Fehling test
15	2 -Methyl bytanamide on reacting with Br_2 in alkaline medium gives an amine
15	Which of the following is a correct characteristic of that amine?
	(A) It is optically active
	(B) It is a secondary amine
	(C) It can form a stable diazonium salt
	(D) It has one carbon atom more than the amide
16	The strongest base among the following is?
	(a) $\langle \rangle \rangle^N$ (b) $\langle \rangle^N$
	(c) (d) (d) (d)
17	Which of the following is TRUE about the solubility of Ethylamine and Aniline?
	(A) Aniline is soluble in HCl (B) Both are insoluble in HCl.
	(C)Both are soluble in water (D) Ethylamine is insoluble in water.
18	Amongst the given set of reactants, the most appropriate for preparing 2°
	amine is
	(A) 1° R-NH ₂ + RCHO followed by H_2/Pt
	(B) 2° R-Br + NaCN followed by H ₂ /Pt
	(C) 2° R-Br + NH ₃
10	(D) 1° R-Br (2 mol) + potassium phthalimide followed by H ₃ O'/ neat
19	For a school project work Mrs. Roy asked her students to dye a white hanky.
	Sakshi and Seema took the help of their chemistry teacher for the project.
	vellow colour was formed by preparing a compound X and immediately adding
	aniline to it. The orange colour was formed by preparing compound X and
	immediately adding phenol to it.
	The students saw compound X was readily soluble in cold water. Compound
	"X" is
	(A) Methyl amine (B) Aryldiazonium salt

	(C) ethyldiazonium salt (D) Ethyl amine
20	IUPAC name of product formed by reaction of methyl amine with two moles of
	ethyl chloride
	(A)N,N-Dimethylethanamine (B)N,N-Diethylmethanamine
	(C) N-Methyl ethanamine (D)N-Ethyl - N-methylethanamine
21	Benzoic acid is treated with SOCl ₂ and the product (X) formed is heated with
	ammonia to give (Y). (Y) on reaction with Br_2 and KOH gives (Z). (Z) in the
	reaction is –
	(A) aniline (B) chlorobenzene
22	(C) benzamide (D) benzoyl chloride
22	Nitration of aniline also gives m-nitro aniline, in strong acidic medium because
	(A)In electrophilic substitution reaction amino group is meta directive
	(B)In spite of substituents hitro group always goes to m- position
	reaction
	(D)In strong acidic medium aniline present as anilinium ion
23	Arrange the following in increasing order of basic strength:
	Aniline, p-nitroaniline and p-toluidine
	(A) Aniline< p-nitroaniline < p-toluidine
	(B) Aniline < p-toluidine < p-nitroaniline
	(C) p-toluidine < p-nitroaniline <aniline< th=""></aniline<>
	(D) p-nitroaniline < Aniline <p-toluidine< th=""></p-toluidine<>
24	Benzene sulphonyl chloride is a chemical which can be used to identify the class
	of an Amine. When an amine 'A' reacts with benzene sulphonyl chloride it gives
	precipitate of sulphonamides which is soluble in alkali. The amine A is;
	(A) N-Ethylethanamine (B) N, N-Diethylethanamine
25	(C) Ethanamine (D) N-Methylbenzenamine
25	(A) Aniling bromide (B) a bromogniling
	(C) p-bromoaniline $(D)^2$ 4 6-tribromoaniline
26	In the reaction sequence the product 'C' is:
20	NH.
	$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	(A) honzonitrila (B) honzulamina
	(C) benzoic acid (D) benzaldebyde
27	The most appropriate fact about the diazonium salt is:
27	(Δ) The alkyldiazonium salts are very much stable
	(B) $C_{c}H_{E}CN$ that can't be obtain by the Nucleophilic substitution of CL in $C_{e}H_{E}CL$
	but can be easily obtained from diazonium salt
	(C) Benzene diazonium chloride is a colourless crystalline liquid
	(D) Diazotization reaction requires a high temperature to get completed
28	One of the following amines will not undergo Hoffmann bromamide reaction-
	(A) $CH_3CONHCH_3$ (B) $CH_3CH_2CONH_2$
	(C) CH_3CONH_2 (D) $C_6H_5CONH_2$
29	Two isomers, n- $C_4H_9NH_2$ and $(C_2H_5)_2NH$ have molar mass of 73 each. Which
	of the following is correct about their boiling points?
	(A) The boiling point of n- $C_4H_9NH_2$ is higher than that of $(C_2H_5)_2NH$.
	(B) The boiling point of (C ₂ H ₅) ₂ NH is higher than that of n- C ₄ H ₉ NH ₂ .

	(C) Both the amines will have the same boiling point.							
20	(U) The polling point of both the amines will be lower than that of water							
30	I ne correct statement regarding the basicity of arylamine is							
	(A) ary amines are generally more basic than alky amines because of ary I group							
	(D) ary animes are generally more basic than alkylamines because the hitrogen							
	atom in aryaiamines is sp- nybridised							
	(C) aly annues are generally less basic than alky annues because the nitrogen							
	oloctron system							
	(D) any lamines are generally more basic than alky lamines because the							
	(D) a yannies are generally more basic than alkylamiles because the							
In th	ne following questions from 41-50 a statement of assertion followed by a							
state	ment of reason is given. Choose the correct answer out of the following choices.							
(A)	Assertion and reason both are correct and reason is correct explanation of							
	assertion.							
(B)	Assertion and reason both are correct statements but reason is not correct							
	explanation of assertion							
	Accortion is correct statement but reason is wrong statement							
	Assertion is correct statement but reason is some at statement.							
(0)	Assertion is wrong statement but reason is correct statement.							
21	Acception (A), Averantic 10 proving can be prepared by Cabriel athelesside							
31	Assertion (A): Aromatic 1° amine can be prepared by Gabriel punalamide							
	Synchesis. Reason (R), Primary Alleyhalida undergaas nucleanhilis substitution reaction							
	with anion formed by athelamide							
32	Assertion (A): Besides ortho and para nitroaniline intration of aniline in an							
52	acidic medium also gives the meta derivative							
	Reason (R): In acidic medium aniline gets protonated forming anilinium ion							
33	Assertion (A): Nitration of aniline can be conventionally done by protecting the							
55	amino group by acetylation.							
	Reason (R): Acetylation increases the electron density in benzene ring.							
34	Assertion(A) :Acetanilide is more basic than aniline.							
	Reason(R): Acetylation of aniline results in decrease of electron density on							
	nitrogen.							
35	Assertion (A): Aniline is a stronger base than ammonia.							
	Reason (R): The unshared electron pair on nitrogen atom in aniline becomes							
	less available for protonation due to resonance.							
36	Assertion (A): Propyl amine on reaction with nitrous acid forms aliphatic							
	diazonium salts.							
	Reason (R): Aliphatic diazonium salts are stable at 273-278 K.							
Read	the passage given below and answer the following questions:							
Aniline activates the benzene ring by increasing electron density at ortho- and para-								
positions. Hence, it is o-, p-directingNH2 group strongly activates the ring therefore								
itis	it is difficult to stop the reaction at monosubstitution stage. Among electrophilic							
substitution reaction, direct nitration of aniline is not done to get o- and p-nitroaniline								
becau	because lone pair of electrons present at nitrogen atom will accept proton from							
nitrating mixture to give anilinium ion which is meta-directing. Aniline with								
NaNO	and nut forms benzene diazonium chloride at very low temperature. Aromatic							
amine	es react with hitrous acid to form a yellow only liquid known as in-hitrosoamines.							

In these questions (i-iv), a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

ANSWERS:

1(C)	2(D)	3(C)	4(B)	5(B)	6(B)	7(D)	8(D)	9(B)	10(C)
11(D)	12(A)	13(B)	14(C)	15(A)	16(C)	17(A)	18(C)	19(B)	20(D)
21(A)	22(D)	23(D)	24(C)	25(D)	26(B)	27(B)	28(A)	29(A)	30(C)
31(D)	32(A)	33(C)	34(D)	35(D)	36(C)	37(i)(A)	37(ii)(D)	38(D)	39(D)
40(i)(A)	40(ii)(C)								

	CHAPTER 10	: BIOMOLECULES				
1	Starch is composed of two polysac (A) amylopectin and glycogen (C) amylose and amylopectin	ccharides which are (B) amylose and glycogen (D) cellulose and glycogen				
2	Which reagent is used to convert (A) Br ₂ /H ₂ O (C) Alkaline solution of iodine	glucose into saccharic acid? (B) Nitric acid (D) Ammonium hydroxide				
3	What type of proteins have a fiber water? (A) Globular proteins (C) Secondary proteins	r-like structure and are generally insoluble in (B) Primary proteins (D) Fibrous proteins				
4	Which of the following is a sweete (A) Glucose (C) Maltose	est sugar? (B) Fructose (D) Sucrose				
5	The letter 'D' in carbohydrates sig (A) dextrorotatory (C) optical rotation	nifies (B) configuration (D) mode of synthesis				
6	A diabetic person carries a packet of glucose with him always, because (A) glucose increases the blood sugar level slowly (B) glucose reduces the blood sugar level (C) glucose increases the blood sugar level almost instantaneously (D) glucose reduces the blood sugar level slowly					
7	The (+) or (-) signs in carbohydrates signifies(A) optical rotation(B) configuration(C) diamagnetic nature(D) mode of synthesis					
8	Which of the following polymer is (A)Amylose (C) Amylopectin	s stored in the liver of animals? (B) Cellulose (D) Glycogen				
9	A proteinaceous product is (A) Terylene (C) Polythene	(B) Cellulose (D) Silk and wool				
10	The protein responsible for blood (A) Albumins (C) Fibroin	clotting is (B)Fibrinogen (D Globulins				
11	Invert sugar is (A) a type of cane sugar (B) optically inactive form of suga	r				

	(C) mixture of glucose and galactose(D) mixture of glucose and fructose in equimolar quantities							
12	Which Vitamin is water soluble?(A) Vitamin B1(B) Vitamin B2(C) Vitamin B 12(D) Vitamin B 6							
13	Which of the following is/are example(s) of denaturation of protein?(A) Coagulation of egg white(B) Curding of milk(C) Clotting of blood(D) Both (A) and (B)							
14	What type of amino acids are obtained on hydrolysis of proteins?(A) Alpha (α)-amino acids(B) Beta (β)-amino acids(C) Gamma (γ)-amino acids(D) Delta (δ)-amino acids							
15	The number of chiral carbons in B-D (+) glucose is:(A) five(B) six(C) three(D) four							
16	Which of the following does not have glycosidic linkage?(A) Sucrose(B) Amylose(C) Galactose(D) Maltose							
17	Which of the following is/are a suitable method to prevent scurvy?(i) Intake of citrus fruits(ii) Exposure to sunlight(iii) Intake of green leafy vegetables(A) only (i)(B) only (ii)(C) both (i) and (ii)(D) both (i) and (iii)							
18	Nucleotide is (A) a pentose sugar, phosphoric acid and nitrogen containing heterocyclic compounds (B) a pentose sugar and phosphoric acid (C) phosphoric acid and nitrogen containing heterocyclic compounds (D) none of these							
19	At iso- electric pointan amino aciddoes not migrate in an electrical field.The isoelectric pointis(A)Concentration(B) strength of electric current(C) pH(D) None of these							
20	Which of the following contains a transition metal?(i) Chlorophyll(ii) Haemoglobin(iii) Vitamin B12(iv) DNA(A) i & ii only(B) ii & iii only(C) ii, iii & iv(D) all four							
21	Which of the following is not true for nucleic acids? (A) DNA is the chemical basis of heredity and may be regarded as the reserve of genetic information. (B) RNA is a protein molecule.							

	(C) DNA finger printing is used in forensic laboratories for identification of criminals.								
	(D) DNA molecule is capable of self-duplication during cell division.								
22	Amino acids show amphoteric behavior. Why?								
	(A) They have an amino group (B) They have a carboxylic group								
	(C) Both (A) and (B) (D) none of the above								
22	What type of bonding boling in stabilizing the g bally structure of proteine?								
25	(A) Pentide linkage (B) Hydrogen bonding								
	(C) Amino linkage (D) Van der waals force								
24	What is the relation between the two molecules given below?								
	н он но н								
	но н он								
	н-он но-н								
	CH2OH CH2OH								
	(A)Anomers (B) Functional isomers								
	(C) Epimers (D) Structural isomers								
25	The linkage by which nucleotides are joined together between 5' and 3' atoms of pentose sugar?								
	(A) Phosphodiester linkage (B) Peptide bond								
	(C)Glycosidic linkage (D)Hydrogen bonding								
26	Identify the disaccharide								
	(A)Lactose (B) Maltose (C) Sucrose (D) Trenalose								
27	Enzymes are regarded as								
	(A) biocatalysts (B) messengers								
	(C) inhibitors (D) antibodies								
28	Which of the following amino acids is ontically inactive?								
	(A) Valine (B) Alanine (C) Lysine (D) Glycine								

Reason: The chemical difference between alpha and beta glucose is the orientation of the -OH (hydroxyl) and -H (hydrogen) groups on carbon36Assertion: Proteins are found to have two different types of secondary structure viz. alpha helix and beta pleated structure. Reason: The secondary structure is stabilized by hydrogen bonding Cytosine and guanine have a triple hydrogen bond while adenine and thymine										
	<u>ANSWEK KET</u> 1 2 3 4 5 6 7 8 9 10									
	2	В	D	В	В	С	Α	D	D	В
1	1	12	13	14	15	16	17	18	19	20
	٩	С	D	Α	Α	С	D	Α	С	В
2	1	22	23	24	25	26	27	28	29	30
	3	С	В	С	Α	Α	Α	D	С	D
3	1	32	33	34	35	36				
	C	В	С	Α	D	В				

*****ALL THE BEST*****